
1

1 Introduction
I have started to look into the best way to use git based packaging methodology for Debian. As
David Bremner says in his blog:

The most natural way to work on a packaging project in version control is to have
an upstream branch which either tracks upstream Git/Hg/Svn, or imports of tar-
balls (or some combination thereof, and a Debian branch where both modifications to
upstream source and commits to stuff in ./debian are added.

The challenge comes in translating the independent lines of development in Git branches to a
serialized set of patches to the upstream source that are required for the quilt (3.0) source package
format.

The most obvious (and the most common) way to bridge the gap between git and
quilt is to export patches manually (or using a helper like gbp-pq) and commit
them to the packaging repository. This has the advantage of not forcing anyone to use
git or specialized helpers to collaborate on the package.

The next level of sophistication is to maintain a branch of upstream-modifying com-
mits. Roughly speaking, this is the approach taken by git-dpm, by gitpkg, and
with some additional friction from manually importing and exporting the patches, by
gbp-pq. There are some issues with rebasing a branch of patches, mainly it seems
to rely on one person at a time working on the patch branch, and it forces the use of
specialized tools or workflows. Nonetheless, both git-dpm and gitpkg support
this mode of working reasonably well.

At this point, David introduces git-debcherry, which uses an alternate method to seri-
alizing the various lines of development into a series of patches. This tool meets the following
requirements.

• The user supplies two refs upstream and head. upstream should be suitable for export as a
.orig.tar.gz file, and it should be an ancestor of head.

• At source package build time, we want to construct a series of patches that

1. Is guaranteed to apply to upstream

2. Produces the same work tree as head, outside ./debian

3. Does not touch ./debian

4. As much as possible, matches the git history from upstream to head.

At the project page git-dpm, there is a very nice step by step explanation of how one uses
git-dpm. In this document is attempts a comparison of the effort and complexity when using
git-dpm or git-debcherry to do equivalent packaging related tasks. To do that justice,
a number of fairly routine tasks encountered in will be considered. To this end, consider the
following scenario.

Serializing Git branches into quilt patches

http://www.cs.unb.ca/~bremner/blog/posts/debcamp12/
http://git-dpm.alioth.debian.org/


2

• An new package is created from an upstream source

• Next, a commit is made to work on feature A on top of the upstream code

• Next, and commit is made to start development of feature B

• Next, there is a new upstream version

• Throw in a change made to the ./debian directory

• There follows an additional commit on the feature B branch

• A commit on the feature A branch

All in all, there are two upstream commit, two commits for feature A, and two commits for
feature B, and one commit changing just the ./debian directory. In the rest of this article, we
will follow an hypothetical package through seven uploads.

2 Initial packaging

D1

U1

Figure 1: Initial packaging

The first step is common to both methods; we just import an upstream tarball and create an
initial package. In Figure 1, each ball is associated with a commit, and the arrows represent a
parent–child relationship between the commits.

git-import-orig U1.tar.gz

git checkout -b debian

hack . . . git commit; git tag D1

3 Developing feature A: first commit
Now that we have an initial package, let us start improving it. So, we create a feature branch for
the feature, and add a commit on that branch,

git checkout upstream, git co -b featureA

hack . . . git commit ; git tag A1

Serializing Git branches into quilt patches



Feature A1: Using debcherry 3

3.1 Feature A1: Using debcherry
This is straightforward. Since the topic branch for feature A was just created, and this is the first
commit on it, and the debian branch has had no other changes outside of ./debian, we can just
merge on to the debian branch.

D1 D2

A1

U1

Figure 2: Adding a local feature: debcherry

git checkout debian, git merge A1 (1)
hack ./debian . . . git commit ; git tag D2 (2)

3.2 Feature A1: Using git-dpm

D1 D2

A10

A1

U1

Figure 3: Adding a local feature: git-dpm

This where things get interesting. And somewhat complex. The history looks a bit busy.

git-dpm prepare (1)
git-dpm checkout-patched (2)
git cherry-pick A1 (3)
git-dpm update-patches (4)
hack ./debian . . . git commit ; git tag D2 (5)

Serializing Git branches into quilt patches



4

4 Developing feature B: first commit
On to feature B

git checkout upstream, git co -b featureB

hack . . . git commit ; git tag B1

4.1 Feature B1: Using debcherry

D1 D2 D3

A1

B1

U1

Figure 4: Starting a second feature: debcherry

This is still straightforward. We see our first use of the git-debcherry command. Please
note that when we merge the new feature B commit on to the debian branch, there is a potential of
needing to merge any conflicts that might happen.

git checkout debian, git merge B1 (3)
git-debcherry -o debian/patches (4)
hack ./debian . . . git commit ; git tag D3 (5)

4.2 Feature B1: Using git-dpm
Here the conflict resolution might need to happen when we cherry pick the commit for feature B
on to the ephemeral patched branch. As far as conflict resolution steps go, either method has the
same level of user pain. However, the history is beginning to look increasingly complex.

git-dpm checkout-patched (6)
git cherry-pick B1 (7)
git-dpm update-patches (8)
hack ./debian . . . git commit ; git tag D3 (9)

Serializing Git branches into quilt patches



5

D1 D2 D3

B11

A10

A1

B1

U1

Figure 5: Starting a second feature: git-dpm

5 Changes to the Debian packaging and upstream
In this section we look at what happens if there is a change to the ./debian directory, followed by
a new upstream release. The following ignores any changes made in the new upstream that might
require re-working the new features, since working through those scenarios adds more confusion
than clarity at this point.

git checkout debian . . . hack . . . git commit ; git tag D4

git checkout upstream, git-import-orig U2.tar.gz; git tag U2

5.1 New upstream: using debcherry
I am beginning to like how one may just ignore the serializing issue to just before getting ready to
package, build, test and upload. Most of the rest of the time one may just concentrate on normal
development. Again, the point where the new upstream gets merged into Debian is a potential
point where conflict resolution might be required.

git checkout debian, git merge U2 (6)
git-debcherry -o debian/patches (7)
hack ./debian . . . git commit ; git tag D5 (8)

Serializing Git branches into quilt patches



New upstream: using debcherry 6

D1 D2 D3 D4 D5

A1

B1

U1 U2

Figure 6: New upstream release: debcherry

D1 D2 D3 D4 D5

B11 B12

A10 A11

A1

B1

U1 U2

Figure 7: New upstream release: git-dpm

Serializing Git branches into quilt patches



New upstream: Using git-dpm 7

5.2 New upstream: Using git-dpm

git-dpm new-upstream (10)
git-dpm rebase-patched (11)
git-dpm update-patches (12)
hack ./debian . . . git commit ; git tag D5 (13)

Actually, git-dpm new-upstream could have been used to import the sources and rebase the
patched branch on top of it with one go. Rebasing the previous patches might require conflict
resolution. Looking at the two figures, we can see that using patch queue management using a
patch branch is leading to a higher possibility of requiring conflict resolution, or, at least, more
potential merge events where conflict resolution might be required.

6 Continuing development of feature B
The features are deliberately being updated in the reverse order of how they were initially started,
just to see if it would cause any issues. There is little new in the way this commit is processed:

git checkout featureB

hack . . . git commit ; git tag B2

6.1 Commit for feature B: using debcherry

D1 D2 D3 D4 D5 D6

A1

B1 B2

U1 U2

Figure 8: Enhancing feature B: debcherry

git checkout debian, git merge B2 (9)
git-debcherry -o debian/patches (10)
hack ./debian . . . git commit ; git tag D6 (11)

Serializing Git branches into quilt patches



Commit for feature B: Using git-dpm 8

D1 D2 D3 D4 D5 D6

B21

B11 B12

A10 A11

A1

B1 B2

U1 U2

Figure 9: Enhancing feature B: git-dpm

6.2 Commit for feature B: Using git-dpm
While there is nothing new, please note that the history is beginning to get very complex here,
compared to what we get when using git-debcherry. Such complexity has its own price.
Also, though all the conflict resolution happens in the patched branches, the number of locations
for possible conflict resolution does tend to climb.

git-dpm checkout-patched (14)
git cherry-pick B2 (15)
git-dpm update-patches (16)
hack ./debian . . . git commit ; git tag D6 (17)

7 Finally, updates to feature A
This is simple enough, and this is the last code drop in our exercise. We now have two commits
each on the upstream. feature A, and feature B branches, as well as a pure packaging commit on
the debian branch.

git checkout featureA

hack . . . git commit ; git tag A2

Serializing Git branches into quilt patches



Commit for feature A: using debcherry 9

D1 D2 D3 D4 D5 D6 D7

A1 A2

B1 B2

U1 U2

Figure 10: Enhancing feature A: debcherry

7.1 Commit for feature A: using debcherry

git checkout debian, git merge A2 (12)
git-debcherry -o debian/patches (13)
hack ./debian . . . git commit ; git tag D7 (14)

Using git-debcherry has been pretty simple, and the history is as minimal as it can be;
there has been no impact on the history of the git repository due to the patch serialization required
by the quilt (3.0) source format. Given this, this approach does seem to offer advantages over a
serialization branch; although it is yet to be seen if approach will scale with a longer history of
commits on the debian branch Also, all conflict resolution for merging all the lines of development
into the packaged debian branch actually lives in the debian branch itself. That is neat.

7.2 Commit for feature A: Using git-dpm
By this time, the following routine should have become second nature::

git-dpm checkout-patched (18)
git cherry-pick A2 (19)

However, despite the fact that this is routine, the serialization process needing to be split up
into two parts:

• Creating an ephemeral patched branch based on ./debian/patches

• After working on the branch, recreating the patches from it using git-dpm update-patches

means that more activity takes place around patch serialization.

Serializing Git branches into quilt patches



Commit for feature A: Using git-dpm 10

D1 D2 D3 D4 D5 D6

A31

B21

B11 B12

A10 A11

A1 A2

B1 B2

U1 U2

Figure 11: Enhancing feature A: git-dpm

Serializing Git branches into quilt patches



11

At this point, we notice that our patched branch has the patches for feature A sandwiching the
changes for feature B. We can improve on it by using git rebase

git rebase -i A11 (20)
git-dpm update-patches (21)
hack ./debian . . . git commit ; git tag D6 (22)

D1 D2 D3 D4 D5 D6 D7

B21 B22

B11 B12 B13

A21

A10 A11

A1 A2

B1 B2

U1 U2

Figure 12: Enhancing feature A: git-dpm, part II

8 Conclusion
This concludes our exercise of following a hypothetical package through seven upload cycles,
using two different strategies to serialize the lines of development. This has demonstrated that
while git debcherry might be slower, and more complex, it has abstracted away some of
the complexity of serializing git based development into the quilt (3.0) source format. It also
tends to lead to a simpler history, which could be significant while debugging (or performing git
bisects). However, there are some nice aspects of git-dpm, such as the ability to re-order patches
by rebasing the patched branch, and not to lose any history by aggressively recording history for
the ephemeral patch queue branch.

Serializing Git branches into quilt patches


	Introduction
	Initial packaging
	Developing feature A: first commit
	Feature A1: Using debcherry
	Feature A1: Using git-dpm

	Developing feature B: first commit
	Feature B1: Using debcherry
	Feature B1: Using git-dpm

	Changes to the Debian packaging and upstream
	New upstream: using debcherry
	New upstream: Using git-dpm

	Continuing development of feature B
	Commit for feature B: using debcherry
	Commit for feature B: Using git-dpm

	Finally, updates to feature A
	Commit for feature A: using debcherry
	Commit for feature A: Using git-dpm

	Conclusion

