
Security Enhanced Virtual Machines
An Introduction and Recipe

Manoj Srivastava
Copyright c© 2006. All rights reserved.

April 6, 2006

This paper is free software, you can redistribute it and/or modify it under the terms of either
the GNU General Public License as published by the Free Software Foundation; Version 2, or
the “Artistic License”. On Debian GNU/Linux systems, the complete text of the GNU General
Public License can be found in ‘/usr/share/common-licenses/GPL’ and the Artistic
Licence in ‘/usr/share/common-licenses/Artistic’.

Abstract

This paper, and the corresponding workshop, focusses on one of the major problem areas that any organization
that is active on the Internet has to solve in order to conduct business in an increasingly hostile environment. The
Discretionary Access Controls (DACs) that are the predominant Operating System (OS) techniques in mainstream
OS’s for managing security make them highly vulnerable to cyber-attacks, since they lack the ability to introduce
and enforce strong, system-wide, security policy based, system defenses. This paper details the need for Mandatory
Access Control (MAC), the benefits of virtualized server platforms and strong compartmentalization, and walks
through a step by step process of implementing such a security architecture on a modern Debian system. This walk
through would entail configuring and compiling an virtual machine (the example is an User Mode Linux [UML]
image, but the same mechanism can be adopted for Xen VMs as well), creating a base root file system for the UML
image to run, and briefly touches on the networking configuration required to connect the virtual machine to the
network.

1 Introduction
In this increasingly connected information age, the utility of a computer is negligible unless it is connected to the
internet. Also a truism in this age, that any machine connected to the Internet increasingly comes under attack. The
trend is a growing spate of remote and local attacks on computer systems.

In face of this increasingly hostile environment, it is difficult for organizations to meet common security goals,
including, but not restricted to:

Authentication This ensures that the actors initiating the actions taken by the system are correctly identified, and an
assurance that the identity is not false.

Authorization This ensures that the actor is authorized to perform the action under consideration, or has access to
resources on the system.

Confidentiality It ensures that the information on a computer system or transmitted over a network is only accessible
to authorized entities. This applies to simply revealing the existence of the information, object, or asset.

Integrity It means information (or other assets) can only be modified or deleted by authorized entities, using autho-
rized mechanisms, without bypassing auditing, for example. It is also required that there is some assurance that
data has not been tampered with.

Motivation 2

Domain Separation For information assurance, it is desirable to compartmentalize information into separate domain,
with varying levels of secrecy and security. It is imperative that cross-domain information flow be properly
scrubbed, and there be no mechanisms to bypass such scrubbing. Absent these cross-domain pipelines, leakage
between domains must be prevented.

Availability It means that the assets are accessible to the authorized parties in a timely manner. Failure to meet this
goal results in denial of service.

In this paper we concentrate on AUTHORIZATION, CONFIDENTIALITY, INTEGRITY and DOMAIN SEPARATION.
We also touch on some mitigating stances that systems can take to partially counter denial of service attacks.

2 Motivation
Why do we need security and information assurance now more than we ever did before? Because there is an increasing
frequency of active attacks based on software bugs, bypassing perimeter security using Trojans, man-in-the-middle
attacks, back doors, spy-ware, malware, distributed denial of service attacks and bot nets. Who are the attackers?
Some are “script kiddies,” while others are spammers and extortionists.

Another trend is for the attackers being increasingly motivated by the profit motif, and the attacks are no longer
hacks with mischievous intent. Financial, and identity data, is increasingly coming under pressure, and we are only
a short distance away from entities being engaged in a network warfare scenario for economic, political, and reasons
of sheer spite. In this case, the situation is even more dire, with dedicated teams of opponents engaged specifically to
destroy, disrupt, degrade, deny, delay, corrupt or usurp information resident in or transiting through mission critical
networks. Have no doubt, this is indeed warfare, and most systems are vulnerable.

A typical scenario involves an attack vector that exploits software flaws in Internet facing services, and subse-
quently corrupts data residing in the service, or otherwise disrupts nominal operation. For example, suppose the target
machine runs SSHD, which has a software flaw. The attackers send a carefully crafted, long string to SSHD, which
fails to check length of input stream. The input buffer overflows into the stack. As a result, the attacker gets their code
executed by SSHD, which runs privileged in most mainstream operating systems.The machine is now compromised,
as is everything that trusts it. Once discovered, such a penetration costs many man-hours to correct. Attacker may, of
course, be the authorized user of the machine, thus trying to get unauthorized privilege.

Some of the negative effects of these attacks can easily be mitigated by providing highly granular privilege separa-
tion in the service. However, very often this can not be done in the discretionary access control (DAC) model utilized
by most current operating systems, since the service often owns the data objects whose integrity needs to be protected.

Another common attack vector results in cases where software flaws in system services are exploited remotely
to gain privileges on the target platform often resulting in the attacker taking over the computer system in question.
Such an escalation of privileges by the attacker can be hard to prevent in complex pieces of software executing on
conventional COTS operating systems. Sand boxing applications and services and protecting them from each other
and the underlying system would do a lot to mitigate such attacks.

Yet another family of attacks succeeds by getting an authorized user to run an infected program; and then this
“Trojan” has access to any data available to the victim running it, as well as authorization to take any action that the
user may legitimately take (like sending email). Given these privileges, the “Trojan” can corrupt data, send it back to
the attacker, or erase it. In any case, data integrity and confidentiality are compromised. Lack of fine grained privilege
separation leaves the victims open to such attacks. The damage from a Trojan is magnified manifold if it further
exploits a local privilege escalation flaw (root exploit) and takes over the machine. In simple cases, the malware tries
and infects other computers in the domain, and often these secondary attacks succeed since they are coming from a
“trusted” computer in the local domain. In recent years, several worms have exploded over the Internet with wildly
exponential infection rates by exploiting just such flawed software that was widely deployed.

In a more extreme but not uncommon scenario, a computer which is taken over may exhibit no immediate symp-
toms, but may wait for instructions from remote attackers to mount a coordinated attack (sometimes “phoning home”
for instructions from the remote attacker) at a particularly critical moment.

The strategies employed by most operating systems to protect against such vulnerabilities (deploying anti-virus
scanners and filtering firewalls) are reactive, and are ineffectual in the face of zero day exploits and the gap between
an exploit being deployed and the security mechanism being upgraded to detect and disinfect the virus. Furthermore,
rapidly mutating viruses present an even greater challenge to reactive, as opposed to pro-active techniques.

2.1 Vulnerable programs characteristics 3

Complicating the situation even more in the distributed systems context, remote attacks, including distributed
denial of service attacks, are devastating if not intercepted at the perimeter, and can bring application servers to their
knees rapidly. Therefor the ability to distinguish and serve legitimate traffic becomes additionally critical for network
defense.

In warfare (and modern business), information superiority has long been acknowledged as being critical to success.
This implicitly dictates that we should be able to trust the integrity and provenance of the information that we have,
and act upon. We must also ensure that the information we have is confidential, and if we operate in multiple security
domains, with differing confidentiality requirements, that information flow from the secure to a less secure domain is
appropriately scrubbed. This again implies that the information flow through the network must meet processing path
guarantees, and must also meet security requirements for information flows, in a manner that can be audited and where
we have some assurance that the security mechanisms and scrubbing procedures have not been bypassed.

2.1 Vulnerable programs characteristics
So what kind of programs are the targets of most of these attacks, and thus are high priority assets to defend? All these
programs have some common characteristics. These characteristics include:

Privilege changes For example, any setuid or setgid executable. These programs normally have privileges not
available to the user executing them. Any exploitation of weaknesses in the program code can lead to privilege
escalation, and may compromise the machine.

Assumption of Atomicity This is specifically exploitable is there is a window between a security check, and per-
forming actions based on that check – for example, checking access permission and opening a file, or deleting a
symbolic link – which could have been re-targeted in the interim. In any case, this could lead to bypassing the
security check by an attacker properly timing their attack vector.

Trusting the execution environment For example, programs that assume that they are loaded as compiled, or that
their plug-ins are to be inherently trusted.

Trusting user input The sshd example above is a classic case of this kind of vulnerability. Programs need to be
especially careful when dealing with user input, which could be maliciously formulated, or inadvertently not
meet expectations. Even if no unknown users have access, the program is still vulnerable to insider attacks.

Executing mobile code This is becomming common with the growing popularity of interpreted languages, where
code is squirted to a server over the network and executed.

Using shared resources This by itself is not a vulnerability, but a compromise of any program accessing shared
resources may infect all other users.

3 Solutions
Given the attack vectors and exploitable vulnerabilities detailed above, what are the ways we can counter the threat?
Any solution needs to provide as many of the following system characteristics as possible:

Privilege separation This helps contain any compromise of a subsystem from spreading, and moderates attack vec-
tors that target programs performing privilege changes.

Fine grained access control This allows for tighter control of the security of the system without impacting ability of
subsystems to perform the required tasks. This also prevents programs run by a user from compromising all the
assets accessible to the user, if a proper security policy is in place. Properly deployed, this may obviate the need
for privilege changes entirely for some programs.

Role Based access control This allows a single human to wear several hats, and lower the security vulnerability and
privilege when working on tasks where it is not required.

Least Privilege No process of user should be given more privileges than they actually need. This can work hand in
hand with the finer grained access controls and privilege sets lock down the security of a system. If a program
or user does not have a privilege, then it can not be exploited to compromise the machine in the first place.

3.1 MAC 4

Limitation of error propagation A compromise of a single application server or subsystem should not lead to the
compromise of the machine as a whole.

Resistance to privilege escalation This prevents some of the common exploits immediately – even if a program is
compromised.

Assurance Confidence in the completeness and correctness of security policy in use

Protected Paths This provides secure communication guarantees of confidential and unmodified messaging across a
mutually authenticated channel

Not be bypassed No security solution is worth anything if an attacker can just bypass the security mechanisms.

Most of these properties require operating system control of program execution, capabilities, and of all system in-
formation flow paths to minimize leakage of secrets, prevent insertion of malicious programs, and protect the integrity
of system processes.

One of the strongest defenses possible is Security Enhanced Linux from the NSA, with its mandatory access con-
trols, and policy based security (which is added to the discretionary access controls common to UNIX derivatives).
It provides all the characteristics of a successful security mechanisms mentioned above. It has no concept of a “su-
peruser”, and does not share the shortcomings of traditional UNIX security mechanisms (like depending on coarse
grained access control and setuid or setgid binaries).

Properly written, a mandatory access policy can be used to set up a sandbox for any program (including any and all
Internet facing services), such that they can not access resources and information unless expressly permitted. SELinux
policies allow for sand-boxing applications to minimize the effect of a successful compromise.

A compromise of a single application server of subsystem may affect data integrity of that application, but does
not pose a threat to other subsystems or the system as a whole. Using a static information flow analysis of the security
policy, it is feasible to determine what domains would be affected by the compromise of any system, and steps can be
taken to either tighten security policies, or to address recovery of the downstream domains in case of a compromise.

3.1 Why Mandatory Access Control?
In view of the failure of conventional discretionary access control mechanisms to provide attestable levels of security
for computer systems and networks, mandatory access control (MAC), based on operating system level capabilities, is
foundational. In order to provide system security, end systems need to be able to enforce the separation of information
based on confidentiality and integrity requirements. This is not possible without active support from the operating
system, since otherwise, any security mechanism built on top of operating systems lacking this ability can be by-
passed. Without MAC, application security mechanisms are vulnerable to tampering and bypassing, and malicious or
flawed applications can easily cause failures in system security. Without MAC, preferably leveraged upon hardware
based trusted computing mechanisms, it is impossible to provide the needed data integrity, confidentiality, and domain
separation with any level of assurance.

Standard discretionary access controls provided in most operating systems base access decisions on coarse grained
user identity and ownership. To ensure a cohesive chain of trust, it must be possible to consider additional security-
relevant criteria such as the role of the user, the function and trustworthiness of programs, and the sensitivity or
integrity of the data. Under DAC, files are owned by a user and that user has full control over them, including the
ability to grant access permissions to other users. The root account has full control over every file on the entire system.
An attacker who penetrates an account can do anything with the files owned by that user – and if the user is root, has
full control over the system. As a corrolary, there is no way to protect against a malicious super user.

Protection against malicious code is not possible using existing DAC mechanisms because every program executed
by the user inherits all of the privileges associated with that user. Malicious programs are free to change the permissions
associated with all of the user’s objects, as well as disclose or alter the objects themselves. This problem is exacerbated
by the fact that only two categories of users are supported, completely trusted administrators and completely untrusted
ordinary users. Many system services and privileged programs must run with coarse-grained privileges that far exceed
their requirements. A flaw in any one of these programs can be exploited to obtain complete system access.

As long as users have complete discretion over objects, it will not be possible to control data flows or enforce a
system-wide security policy. Type enforcement, a critical capability provided by MAC enabled operating systems,

3.1 MAC 5

allows static analysis and enforcement of data flow, facilitates privilege separation, guards against privilege escalation,
and provides all the support mechanisms required to assure data integrity and confidentiality.

Policy based control is yet another critical feature provided by MAC enabled systems. When properly imple-
mented, a detailed security policy enables a system to adequately defend itself and offers critical support for appli-
cation security by protecting secured applications from being tampered with and being bypassed. It allows critical
processing pipelines to be established and guaranteed. A fine grained, tightly configured security policy also enables
strong separation of application privileges that permits the safe execution of untrustworthy applications in an isolated,
secure sandbox. Its ability to limit the privileges associated with executing processes limits the damage that can result
from the exploitation of vulnerabilities in applications and system services.

A MAC security policy, with well formed domain transitions, can also prevent privilege escalations from succeed-
ing. Even a compromised application, overcome by, say, a buffer overflow exploit, would not allow the remote attacker
to gain control of the machine, irrespective of whether the exploited application was running as a user process or some
privileged system process. MAC enables information to be protected from legitimate users with limited authorization
as well as from authorized users who have unwittingly executed malicious applications. Access to sensitive informa-
tion can be tightly controlled, and tamper proof audit trails can be kept of all access to data. This enforcement of role
based access control (RBAC) allows for flexibility without compromising security. The ability for systems to provide
capabilities such as these is essential for the design and implementation of secure systems. For example, separating
security officer and systems administrator roles makes attacks perpetrated by rogue insiders harder to carry out.

Deploying SELinux results in security policies that are amenable to static analysis, and information flow assurances
that provide validation that there are no leaks from one security domain to another. Thus, in the event of a breach in
security, the scope of the breach can be readily assessed, and damage limiting mechanisms can be deployed.

Expanding on the above capabilities, SELinux also adds network path protection, where the concept of firewalls
is extended to processes on a MAC enabled node. Network access policies will allow a process in a certain security
context on one machine to be assured of a connection from another process in a known security context on a remote
machine, as opposed to blocking packets based on IP addresses and port tuples as conventional firewall based ap-
proaches do. Even with asymmetric security (with MAC based labeling only on one end of the connection), a MAC
enabled system can enforce policies based on roles and process domain policies, as opposed to the crude host-to-host
policies of a firewall based solution. Once network paths and the packets traveling over them are labeled, it is possi-
ble to distinguish legitimate traffic from potentially dangerous traffic, and block it before it reaches application code.
This also helps mitigate denial of service attacks, by blocking unauthorized traffic at the perimeter, and not exposing
services to such attack vectors.

The role-based access control component defines an extensible set of roles. Each process has an associated role.
This ensures that system processes and those used for system administration can be separated from those of ordinary
users. The configuration files specify the set of domains that may be entered by each role. Each user role has an initial
domain that is associated with the user’s login shell. As users execute programs, transitions to other domains may,
according to the policy configuration, automatically occur to support changes in privilege.

3.1.1 Non-by-passable processing pipelines

The need to transfer data between security domains over a network is a common requirement today. Firewalls, email
gateways, and other edge-of-the-network protection devices are some examples of such cross domain devices. A cross-
domain solution (also called guards) that connects different security domains with differing levels of confidentiality
and integrity requirements needs a high degree of confidence in its implementation.

A critical requirement of such a solution is that the processing pipeline of filters and scrubbers not be by-passable,
and that data be transmitted across the device in a controlled way.

SELinux and MAC policies allow us to define a data flow path which can only happen through the required
processing stages.

3.1.2 Eamples of functionality enabled by MAC

With MAC, one can ensure that a mail user agent run by an user only has access to files related to stored mail – and
not all files owned by that user. MAC in effect provides each application with a virtual sandbox that only allows
the application to perform the tasks it is designed for and explicitly allowed in the security policy to perform. For
example, the webserver process may only be able to read web published files and serve them on a specified network

3.2 Why Virtualization? 6

port. An attacker penetrating it will not be able to perform any activities not expressly permitted to the process by the
security policy, even if the process is running as the root user. Files are assigned a security context that determines
what specific processes can do with them, and the allowable actions are much more finely grained than the standard
Unix read/write/execute controls. For example, a web served file would have a context allowing the apache process to
read it but not execute or make changes to it, while the log files would be appendable but not readable or otherwise
changeable by apache. Network ports are also assigned a context, which can prevent penetrated applications from
using ports not permitted to them by security policy. Standard Unix permissions are still present on the system, and
will be consulted before the SELinux policy when access attempts are made. If the standard permissions would deny
access, access is simply denied and SELinux is not consulted at all. If the standard file permissions would allow
access, the SELinux policy is consulted and access is either allowed or denied based on the security contexts of the
source process and the targeted object.

3.1.3 In conclusion

Role based access controls, type enforcement, auditable, enforced security policies, strong support for security do-
mains, and a grounds up security policy designed around the principles of privilege separation and least privilege,
can move any network operation into a highly defensible security stance. Such a system is pro-active, fail safe, proof
against zero-day exploits of program flaws, provides strong separation of security domains, ensures application, and
data integrity, ability to limit program privileges, can provide processing pipeline guarantees allows applications to be
effectively sand boxed so that a compromised application does not affect other applications and services on the system,
and provides an ability to strongly protect audit logs from unauthorized access and from tampering. It can implement
authorization limits for legitimate users.

Further, it is undergoing common criteria security evalutaion at various levels, sponsored by various commercial
distributions of Linux, so the security offered by SELinux and the reference policies has been certified by domain
experts.

The contrast between this approach and the approach of most security products in the anti-virus and intrusion
prevention and detection markets could not be more stark. Anti-virus and IDS/IPS systems based on signatures are
reactive, operating only on known threats, which is why zero-day exploits are so prized by malware authors. You can
compare these products to firewalls with a default “allow any” rule, and many specific “deny” rules. This is a losing
battle, as the quantity of malware keeps increasing at an exponential rate and vendors and their customers fight a
losing battle to keep up. Any newly discovered security flaw will have a window of vulnerability between the exploit’s
release and the signature being added and propagated to the end user.

3.2 Why Virtualization?
Virtualization offers security benefits in its own right; it provides strong data isolation, and can be used to setup multi-
ple services on the same hardware in strict isolation from each other, which helps contain infection. So a compromise
of a service on one virtual machine can be quarantined, and the virtual machine can be rebooted from known good
data without affecting other services running in other virtual machines.

The best defense against external threats is not to let them in in the first place. The physical separation, or “air gap”
defense, has become standard in high assurance computing environments, where separate networks are disconnected
from each other. Thus, users needing physical access to multiple security domains must employ a separate CPU and
monitor for each domain.

Virtual machines allow the administrator to easily set up multiple security zones on the same hardware, with total
domain isolation between all virtual machines and the host machine, and implement different security policies as
appropriate for the security zone (think if DMZ and internal servers on the same physical box).

In situations where attestable data separation is important, the ability to show data cannot flow between networks
or between one VM to another is an important property – and can be achieved if the host machine also implements
mandatory access controls.

Additionally, in conjunction with strong MAC security policies, it allows the administrator to finely tailor security
policies for each specific virtual machine, and the services that machine is running.

Virtual machines with copy-on-write virtual file systems can be rolled back to a known good state fairly easily,
which is always good if a particular application server was exploited.

Methodology 7

3.2.1 Need for small severs and migration

Given the advantages of mandatory access control, and the serious flaws that it mitigates, why has the solution not
become more popular and implemented in mainstream operating systems? MAC has been implemented in research
operating systems for the best part of a decade, with clear and significant benefits. The stumbling block is that while
the security advantages are impressive, the system is notoriously hard to configure, the major obstacle being in the
difficulty in implementing a coherent security policy. Though current implementation of modular policy modules
promises to reduce complexity and make it easier to incrementally evolve security policy, it is still a high skill task
with a steep learning curve to develop policy from scratch. Setting up SELinux is not a task for the faint of heart, and
the security polices currently extant are far from complete, making it almost impossible for most folks to convert a
working machine to a secure box, and raises the bar for people who just want to casually try out SELinux. Anything to
automate this process would help in increasing the security all around. This paper sets out to address these deficiencies.

One possible solution is to utilize virtualization, and instead of trying to convert a full featured, working desktop
into a secure platform (quite hard, in advance of Security Enhanced X), and instead create a User Mode Linux virtual
server running in strict mode. One of the advantages of running a UML is that we can create a read only root file
system, and use copy on write file systems to ensure that any changes can be quickly reverted, even if someone can
discover a flaw in the security policy, and exploit it. Also, with UML’s, the monitoring mechanisms are out of the ken
of the virtual machine, since they can run on the host machine, making it far harder to suborn them.

4 Methodology
In this paper, I am concentrating on a walk through for a UML virtual machine. However, most of the steps taken can
be adapted for Xen, with minor changes.

There are a number of problems that novice users face with trying to use a virtual UML instance, firstly, the user-
mode-linux package in Debian is showing signs of neglect, and, secondly, is not generally patched to support SELinux.
Then there is the issue determining a compatible set of sources, patches, and sources of the patches (though as more
and more patches get accepted into the mainstream kernels this is less of a problem now than it used to be).

Even when one has a proper /usr/bin/linux binary, there is the issue of finding a proper root file system to run the
UML on. The root file system creation tools in Sid also show signs of neglect, and even then, one would need to install
SELinux on these root file systems, which is often a frightening task by itself.

4.1 Compiling the host system
There is little to be done here, except to apply the SKAS patches to the host kernel. These patches allow the UML
kernel to run in an entirely different host address space1 from its processes. This solves the security and honey pot
fingerprinting problems by making the UML kernel totally inaccessible to UML processes. Their address spaces are
identical to what they would be on the host. A given version of UML guest will look for a specific SKAS patch in the
host and fall back to thread tracing mode if it’s not there. The boot-up message will tell you which version it’s looking
for in case you’re not sure. The steps are as follows:

1. Download the original kernel sources from kernel.org - selecting the latest version that seems to work well with
UML, which is, at the time of writing, 2.6.16.1.

% cd /usr/local/src/kernel

% wget ftp://ftp.us.kernel.org/pub/linux/kernel/v2.6/linux-2.6.16.1.tar.bz2

% wget ftp://ftp.us.kernel.org/pub/linux/kernel/v2.6/linux-2.6.16.1.tar.bz2.

sign

% gpg --verify linux-2.6.16.1.tar.bz2.sign linux-2.6.16.1.tar.bz2

2. Untar the sources somewhere (/usr/local/src/kernel/ is what I use). It is really immaterial where the
kernel is unpacked, but I tend to avoid /usr/src since I do not want to be root when compiling the kernels, and so
the working directory I use has write permissions for an unprivileged user.

1http://user-mode-linux.sourceforge.net/skas.html

4.2 UML Kernel Compilation 8

% tar jvvfx linux-2.6.16.1.tar.bz2

3. Create a dir for compiling the host kernel (2.6.16.1, for example). It is nice to compile the kernel in a
separate directory tree from the place it has been unpacked, using a symbolic link farm, since it allows one to
apply patches to the build tree while retaining the pristine source tree. Once can then use incremental patches
when the next upstream release of the kernel comes out. Additionally, this allows us to build a host and a guest
kernel (which needs different patch sets) without having to duplicate all the kernel source tree .

% cp -lr linux-2.6.16.1 2.6.16.1

4. Get the SKAS host patch. You can find it on the download page2 for user mode linux. It is also a good idea to
check out the download page of the author3, which has updates. At the time of writing, I got the skas-2.6.16-v9-
pre9.patch.bz2 4 file.

% cd ..

% wget http://www.user-mode-linux.org/∼blaisorblade/patches/skas3-2.6/

skas-2.6.16-v9-pre9/skas-2.6.16-v9-pre9.patch.bz2

5. Apply the SKAS patch.

% cd 2.6.16.1

% bzcat ../skas-2.6.12-rc4-v9-pre4.patch.bz2 | patch -p1 dry-run

% bzcat ../skas-2.6.12-rc4-v9-pre4.patch.bz2 | patch -p1

6. Configure the host kernel (without ARCH=um, this is a host kernel), enable /proc/mm under “Processor type
and features” menu if needed, save the new configuration and build it.

% make xconfig

% make-kpkg --rootcmd fakeroot kernel-image

7. Install the resulting package, tweak your boot loader as needed, and you are good to go.

% dpkg -i../kernel-image-2.6.16.1-skas3-v9-pre9 2.6.16.1 i386.deb

If we were trying to compile a Xen virtual machine here, we would be compiling the domain 0 kernel image, which
would mean a slightly different .config file, and not bothering with the SKAS patch, but not very different.

4.2 A recipe for compiling the UML image
The good news is that the uml patche is now incorporated into the mainline kernel. The mainline SELinux support is
also there, for the most part, with occasional patches once in a while. The SELinux kernel patch for 2.6.16 includes a
few minor changes pending merge in the next kernel release.

1. First, get the latest SELinux patches from NSA’s download page5.

% wget http://www.nsa.gov/selinux/patches/2.6.16-rc6-selinux1.patch.gz

2. Create a dir for compiling the UML kernel (uml-2.6.16.1, for example), and populate it with symbolic
links.

% cp -la linux-2.6.16.1 uml-2.6.16.1

2http://user-mode-linux.sourceforge.net/dl-sf.html
3http://www.user-mode-linux.org/∼blaisorblade/
4http://www.user-mode-linux.org/∼blaisorblade/patches/skas3-2.6/skas-2.6.16-v9-pre9/skas-2.6.

16-v9-pre9.patch.bz2
5http://www.nsa.gov/selinux/code/download5.cfm

4.3 Networking 9

3. Apply the SELinux patch. Note that there shall be a small failure, for Makefile, since the SELinux patch was
against 2.6.16-rc6, and we are actually using 2.6.16.1. This is harmless.

% zcat ../2.6.12-selinux1.patch.gz | patch -p1 --dry-run

% zcat ../2.6.12-selinux1.patch.gz | patch -p1

4.
�

�
	Please note that if you configure something as a module, an extra step would be required to install

the modules into the UML

Configure the kernel (don’t forget ARCH=um). Since we have patched the host kernel with SKAS, we may turn
of the thread tracing mode. Also, hostfs is a nice option to have, unless you are very concerned about security
and leaking information from the host system into the UML. Configure the character, block, and network devices
to include all the features you shall need in the UML. I strongly suggest using the honey-pot proc pseudo file-
system, as well as logging. DO NOT turn on SMP and highmem support; that is known to be broken for
these versions. (Oh, don’t forget to turn on SELinux – which also needs AUDIT to be turned on, amongst other
things). Save the new configuration and build it.

% make ARCH=um xconfig

5. Recent versions of kernel-package have the functionality to build linux-uml packages natively, so, instead of
doing make ARCH=um linux, we can build a linux-uml debian package instead.

% make-kpkg --arch=um --rootcmd=fakeroot kernel-image

6. This results in a ../kernel-uml-2.6.16.1-selinux1 10Custom i386.deb, for example, which
can be installed anywhere using dpkg.

% dpkg -i ../kernel-uml-2.6.16.1-selinux1 10Custom i386.deb

4.3 Preparing to network the UML’s
The networking page6 at the UML home defines a number of ways to network the resulting UML’s. Since the kernels
used are way beyond 2.2.X, ethertap was out. Multicast, slip, slirp, and pcap were also out – one should be able to use
the UML to provide real world services. That leaves TUN/TAP and the Daemon protocols. The root fs created below
primarily supports the Daemon (since that makes the root fs more portable, however, tuntap can also be used by just
editing /etc/network/interfaces on the root fs and uncommenting the tuntap stanza.

4.3.1 Using TUN/TAP

If you go the tun/tap route, you may either setup a fixed tap device as detailed below, or you may use the uml net
command. To do that, make sure that the user that runs the UML is in the group uml-net.

adduser srivasta uml-net

Next, make sure /usr/lib/uml is in the path for the user who runs the UML
export PATH=’’$PATH:/usr/lib/uml’’

After this, you just need to specify that the eth0 interface in the UML needs to use the tun/tap transport, set up
/etc/network/interfaces inside the UML, and then sit back and let uml net do the rest (including proxy arp
and all). An example is Appendix A on page 13.

eth0=tuntap,,,<IP of Host Machine>

6http://user-mode-linux.sourceforge.net/networking.html

4.3 Networking 10

4.3.2 Using the Daemon transport

If you just want a bunch of UML’s to talk to each other, then you are all set – uml switch comes set up out of the box
for you. However, if you choose to have the UML communicate to the external world, you need to set up a tap device
for the uml switch network to talk to. All you have to do is add something like this to /etc/network/interfaces
(I chose to use tap2 since I sometimes use a vpnc client that likes to take up tap0; and 192.168.3.X is close enough to
my internal network that I would have to make minimal changes to firewall rules).

iface tap2 inet static

address 192.168.3.2

netmask 255.255.255.0

tunctl user uml-net

Next, make sure that the tap2 interface comes up, tell uml switch to listen to tap2, and restart uml switch.
ifup tap2

perl -pli.bak -e \
> ’s/∧#\s?UML SWITCH OPTIONS=.?/UML SWITCH OPTIONS=\‘‘-tap tap2\’’/’
> /etc/default/uml-utilities

/etc/init.d/uml-utilities restart

Again, you may set up a static network interface inside the UML, or you can set up a DHCP server on the host,
and setup your UML to be a DHCP client. The advantage of the latter is that I can then share root file systems across
machines, since there is nothing that is site-specific inside the root fs. An example of the static interface setup is in
Appendix A on page 13.

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static

address 192.168.1.13

netmask 255.255.255.0

network 192.168.1.0

broadcast 255.255.255.255

gateway 192.168.1.10

To set up DHCP, first one needs to setup DHCP; Appendix B on page 13 contains an example you may use to set
up dhcp on the host. You may need to edit /etc/default/dhcp in order to tell dhcp to listen on tap2, by adding
the following line (if you already have an interfaces line, add tap2 to it).

INTERFACES=‘‘tap2’’

Then just restart dhcpd to have it start listening on the tap2 line:
% /etc/init.d/dhcp restart

Then mount the UML root fs, and change the /etc/network/interfaces to the following, and you should
be more or less good to go.(In my case, I also had to add tap2 to /etc/shorewall/interfaces, and also add
tap2 to /etc/shorewall/masq, as well as allowing the IP address 192.168.3.X to access my local bind daemon).

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet dhcp

At this point, the possibilited expand. You can set up VPN’s inside the UML instances, or use brctl and create
a bridege to a virtual network of UML instances. You can post forward ports on the host system to ports on the virtual
machine, and run all network facinf deamons inside the UML.

4.4 Creating a root file system 11

4.4 Creating a root file system
The first thing we need to be running a UML on a machine is to install the uml-utilities package.

aptitude install uml-utilities

Though there are already mechanisms in Debian for creating a user mode linux root fs system (notably, rootstrap7

they did not work for me. For example, rootstrap fails currently on a 2.6.x host, since rootstrap tries to build the root fs
inside a UML that uses hostfs to mount the current / as the initial file system - and proceeds to fall flat on its face, since
libc assumes that it can use the native posix thread library (since the UML kernel version is 2.6.16.1), and /lib/tls
exists – but UML has not yet ported NPTL over, so things fail.

I decided to write a simple shell script based around debootstrap8, which also happens to be a simple shell script
with very few dependencies, and hence fewer things that can go wrong. This shell script sets up a root fs, based on a
few variables at the top (you may also drop these variables in /.creatfsrc), and sets it up with a simple uml net
based networking.

First, select a dir on a file system that has at least a GB of space available, and run the the creatfs.sh script (after
suitable modification).

% cd /scratch/sandbox

% /path/to/creatfs.sh

At this point, you should have a root file system that can bootup, and while it is not yet running SELinux, it is
ready to be taken there. There is a script written into /root/post-install.sh that needs to be run inside the
UML to complete the process.

If you had configured anything in the UML as a module, this is the time to install them. If not, you may skip this
step.

% cd /scratch/sandbox

% mount -o loop root fs mounted

% cd /usr/local/src/kernel/uml-2.6.16.1

% make INSTALL MOD PATH=/scratch/sandbox/mounted \
> ARCH=um modules install

% umount /scratch/sandbox/mounted

Russel Coker has created a very useful site9 that has tweaks required to make a system work properly with
SELinux; creatfs.sh tries very hard to incorporate all the relevant tweaks in the root fs created. You should be able to
fire up your UML like so if you are using the TUN/TAP interface and not the persistent tap2 device (just tweak the IP
address of the host):

% /usr/bin/linux mem=256M \
> con=xterm con0=fd:0,fd:1 con1=xterm devfs=nomount \
> tty log fd=3 3>tty log file \
> eth0=tuntap,,,192.168.1.10

If, on the other hand, you are using the daemon transport, use:
% /usr/bin/linux mem=256M \
> con=xterm con0=fd:0,fd:1 con1=xterm devfs=nomount \
> tty log fd=3 3>tty log file \
> eth0=daemon,,unix,/var/run/uml-utilities/uml switch.ctl

The root file system created in this step would also work with a Xen virtual machine, using a loopback mount.
Networking with the Xen instance is different in detail, but conceptually identical.

7http://packages.debian.org/rootstrap
8http://packages.debian.org/debootstrap
9http://www.coker.com.au/selinux/tweaks.html

4.5 Working on SELinux 12

4.5 Working on SELinux
As mentioned before, please look at the tweaks10 page and make any changes that creatfs.sh may have missed.
The next step would be to fire up the UML, and install the SELinux packages. To finish the process, do the following:

1. Fire up the UML. This shall be running in permissive mode, and as yet, there is no policy installed. Expect to
see a lot of warnings in this run; but after we reboot the UML, it should be running with no warnings. So, as
before, if using TUN/TAP transports, use:

% /usr/bin/linux mem=256M \
> con=xterm con0=fd:0,fd:1 con1=xterm devfs=nomount \
> tty log fd=3 3>tty log file \
> eth0=tuntap,,,192.168.1.10

Or else, use:

% /usr/bin/linux mem=256M \
> con=xterm con0=fd:0,fd:1 con1=xterm devfs=nomount \
> tty log fd=3 3>tty log file \
> eth0=daemon,,unix,/var/run/uml-utilities/uml switch.ctl

2. Next, login as root, and run the final step inside the UML. Please note that installing selinux-policy-default fails
initially, and generates error messages, but the script should clean all that up at the end.

% /bin/bash /root/post-install.sh

3. Now, halt the UML

% shutdown -h now

4. Fire up the UML a last time. This time around, there should be no warnings as you boot into an SELinux enabled
UML. Enjoy.

% /usr/bin/linux mem=256M \
> con=xterm con0=fd:0,fd:1 con1=xterm devfs=nomount \
> tty log fd=3 3>tty log file \
> eth0=tuntap,,,192.168.1.10

Or else, use:

% /usr/bin/linux mem=256M \
> con=xterm con0=fd:0,fd:1 con1=xterm devfs=nomount \
> tty log fd=3 3>tty log file \
> eth0=daemon,,unix,/var/run/uml-utilities/uml switch.ctl

5 Conclusion
At this point, you should have a mostly working SELinux virtual machine, barring major bugs in the SELinux pack-
ages. It should be easy to byuld up upon the createfs.sh script to create specialized root file systems, for isntance,
creating a root file system that additionally has postfix installed, or the bind daemon, and mostly automate the creation
of small, tightly controlled, server applications.

This is a work in progress, I’ll be updating the recipe on the web site http://www.golden-gryphon.com/
software/security/selinux-uml.xhtml to work with Xen virtual machines.

The area which needs the msot attention at the moment is the referencxe SELinux policy, it has to be tuned for
Debian, and we need modules to cater to the huge number of packages that we have but Fedora does not.

10http://www.coker.com.au/selinux/tweaks.html

Static network interface 13

A Static network interface
auto lo
iface lo inet loopback

The first network card
This entry was created during the Debian installation
auto eth0
iface eth0 inet static

address 192.168.1.13
netmask 255.255.255.0
network 192.168.1.0
broadcast 255.255.255.255
gateway 192.168.1.10

B DHCP configuration file
dhcpd.conf
#
Sample configuration file for ISC dhcpd
#

option definitions common to all supported networks...
option domain-name "internal.golden-gryphon.com";
option domain-name-servers glaurung.internal.golden-gryphon.com;
option time-servers 132.236.56.250, 130.203.1.10, 198.82.162.213;

option subnet-mask 255.255.255.0;
default-lease-time 6000;
max-lease-time 72000;

subnet 192.168.1.0 netmask 255.255.255.0 {
range dynamic-bootp 204.254.239.33 204.254.239.40;
range 192.168.1.100 192.168.1.120;
option broadcast-address 192.168.1.254;
option subnet-mask 255.255.255.0;
option routers tiamat.internal.golden-gryphon.com;

}

subnet 192.168.3.0 netmask 255.255.255.0 {
range 192.168.3.10 192.168.3.63;
option broadcast-address 192.168.3.254;
option subnet-mask 255.255.255.0;
option routers 192.168.3.2;

}

Fixed IP addresses can also be specified for hosts. These addresses
should not also be listed as being available for dynamic assignment.
Hosts for which fixed IP addresses have been specified can boot using
BOOTP or DHCP. Hosts for which no fixed address is specified can only
be booted with DHCP, unless there is an address range on the subnet
to which a BOOTP client is connected which has the dynamic-bootp flag
set.

REFERENCES 14

group {
use-host-decl-names on;

host cinder {
option ip-forwarding on;
hardware ethernet 00:01:02:9C:DB:8E;
fixed-address cinder.internal.golden-gryphon.com;

}

host ember {
hardware ethernet 00:10:A4:E3:F1:9F;
fixed-address ember.internal.golden-gryphon.com;
option routers tiamat.internal.golden-gryphon.com;

}
}

References
[AEPO90] M. D. Abrams, K. W. Eggers, L. J. L. Padula, and I. M. Olson. Generalized framework for access control:

An informal description. In Proceedings of the Thirteenth National Computer Security Conference, pages
135–143, October 1990.

[Bid05] H. Bidgoli, editor. Introduction to Multilevel Security, volume Volume 3 of Handbook of Information
Security, chapter Threats, Vulnerabilities, Prevention, Detection and Management. John Wiley, 2005.
ISBN 0-471-64832-9.

[BP73] D. E. Bell and L. J. La Padula. Secure computer systems: Mathematical foundations and model. Technical
Report M74-244,, The MITRE Corporation, The MITRE Corporation, Bedford, MA, May 1973. The
basis of multi level security.

[BSS+95] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat. Practical domain and type
enforcement for unix. In Proceedings of the 1995 IEEE Symposium on Security and Privacy, pages 66–77.
IEEE, May 1995.

[FK92] D. Ferraiolo and R. Kuhn. Role-based access controls. In Proceedings of the 15th National Computer
Security Conference, pages 554–563, October 1992.

[HK00] S. Hallyn and P. Kearns. Domain and type enforcement for linux. In Proceedings of the 4th Annual Linux
Showcase and Conference, October 2000.

[LS00] P. A. Loscocco and S. D. Smalley. ntegrating flexible support for security policies into the linux operating
system. Technical report, NSA and NAI Labs,, October 2000.

[LS01] P. A. Loscocco and S. D. Smalley. Meeting critical security objectives with security enhanced linux. In
Proceedings of the 2001 Ottawa Linux Symposium., 2001.

[LSM+98] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J. Turner, and J. F. Farrell. The
inevitability of failure: The flawed assumption of security in modern computing environments. In Pro-
ceedings of the 21st National Information Systems Security Conference,, pages 303–314, October 1998.

[Mor04] J. Morris. Networking in nsa security-enhanced linux. The Linux Journal, December 2004.

[SSL+99] R. Spencer, S. D. Smalley, P. A. Loscocco, M. Hibler, D. Andersen, and J. Lepreau. The flask security
architecture: System support for diverse security policies. In Proceedings of the Eighth USENIX Security
Symposium, pages 123–139. USENIX, August 1999.

REFERENCES 15

[WSB+96] K. W. Walker, D. F. Sterne, M. L. Badger, M. J. Petkac, D. L. Sherman, and K. A. Oostendorp. Confining
root programs with domain and type enforcement. In Proceedings of the 6th Usenix Security Symposium,
San Jose, California,, 1996. USENIX.

