
Mathematical formalization using Coq

Daniel Schepler

November 5, 2011

Contents

1 First steps 2
1.1 Declarations and types . 2
1.2 Proof mode . 7
1.3 Definitions . 15
1.4 Exercises . 19

Introduction

Coq is a proof assistant; its main applications are:

1. Formal program verification. For example, Coq has been used to write and certify a complete
compiler for a large subset of the C language (and what’s left out is largely misfeatures of C
which shouldn’t normally be used in any case).

2. Formalization of mathematical proofs. One notable achievement of Coq in this area is a full
verified proof of the Four Color Theorem.

Most existing Coq tutorials focus mainly on the first application above. The purpose of this
tutorial is to provide an introduction to the second application: mathematical formalization.

First of all, Coq is a proof assistant, and not an automated theorem prover. This means that
you’ll still have to convince Coq that your theorems are true. However, Coq does provide for a
limited amount of automation in the search for proofs of substeps. Moreover, Coq features a tactic
language which allows you to add domain-specific knowledge to aid in your proofs. For example,
Coq comes with built-in tactics to prove trivial ring and semiring identities (e.g. x(x + y) + y2 =
y(x + y) + x2).

This tutorial focuses on the use of CoqIde, a specialized environment for interactive development
of Coq definitions and proofs. Another popular interface to Coq is Proof General, an Emacs mode
which interfaces with the backend. Most of this tutorial should work fine with Proof General, except
that you’ll need to substitute any CoqIde specific instructions with the appropriate equivalents in
Proof General.

1

1 First steps

First, you will of course need to install Coq on your machine. This tutorial will not cover the details
of how to do that. You should find instructions at http://coq.inria.fr/. This version of the
manual uses Coq version 8.3pl2, although it should presumably mostly work fine with other recent
versions of Coq.

Start up CoqIde, and you’ll be presented with a workspace divided into several panels. The
main left panel is where you enter instructions to Coq. The top right panel will show the current
proof state when you’re in proof mode, and the bottom right panel will output Coq’s responses to
queries or proof tactics.

1.1 Declarations and types

In this chapter, to illustrate the basic operation of Coq for constructing formal proofs, we’ll be
writing some basic proofs on the foundations of group theory. To start off, enter:

Parameter G : Type.

Then submit this directive to Coq using the shortcut Alt+Ctrl+↓ (Alt+Ctrl+Cmd+↓ on Mac).
Note that the terminating . is important: it tells Coq where a directive ends. If you forget it, the
shortcut won’t do anything.

For the rest of the manual, we’ll use the following convention to indicate input to Coq and Coq’s
responses:

Coq < Parameter G : Type.

G is assumed

Here a line prefixed with “Coq <” indicates what should be input to Coq, and (optionally)
following text in italics indicates Coq’s response to that input.

This directive tells Coq that we want to assume that G is some (unspecified) element of the type
Type. In contrast to the foundations of Zermelo-Fraenkel set theory (ZF or ZFC) which you may
be familiar with, Coq’s foundation is a type-based theory. This means that every object must have
a type, and any expression you enter must “type check” in some way. For example, try entering
and executing this (we’ll describe the Check directive in more detail a little bit later):

Coq < Check (0 = false).

Toplevel input, characters 11-16:

> Check (0 = false).

> ^^^^^

Error: The term "false" has type "bool"

while it is expected to have type "nat".

This means that 0 is of type nat, while false is of type bool, and the two types are incompatible.
Therefore, it doesn’t make sense to ask whether the two objects are equal. This matches more
closely how most mathematicians think in day-to-day work than the model of Zermelo-Fraenkel set
theory: in ZF, it makes sense for any two objects x and y to ask whether x = y. However, in most
mathematical work, for example if G and H are two groups and g ∈ G, h ∈ H, we wouldn’t write
expressions like g = h, and we’d be likely to set up functions in such a way that we wouldn’t have
to worry about whether or not G and H might “overlap.”

2

http://coq.inria.fr/

In this case, because we’re specifying that G is of type Type, Coq will know that G is something
that can contain elements.

Now we’ll declare the identity element of our group (be sure to remove the faulty Check directive
before continuing):

Coq < Parameter e : G.

e is assumed

This is similar to the previous Parameter directive, except that this time we’re telling Coq that
e is an unspecified element of G. Note, however, that for most types, the elements of that type
cannot serve as types themselves. For example, try entering:

Coq < Parameter x : e.

Toplevel input, characters 14-15:

> Parameter x : e.

> ^

Error: The term "e" has type "G" which should be Set, Prop or Type.

We’ll describe Set and Prop later. For now, we’ll interpret this error message as saying: because
e is an element of G which is not the same as Type, it doesn’t make sense to use e as a type. Again,
this matches more closely how most mathematicians think in day-to-day work than the model of
Zermelo-Fraenkel set theory: in ZF, every object is a set, and it makes sense for any two objects x
and y to ask whether x ∈ y. In contrast, if G is an arbitrary group, most mathematicians would
think of the elements of G as atoms instead of as sets themselves, which is exactly the way Coq
treats them. (In case you’re wondering how Coq would handle sets of sets, sets of sets of sets, etc.,
we’ll cover that later.)

Now, once you’ve removed the faulty Parameter directive, we move on to declaring the inverse
operation:

Coq < Parameter inv : G -> G.

inv is assumed

Here G -> G represents the type of all functions from G to G, so we’re specifying that inv is
some function which is an element of this type.

Coq < Parameter mult : G -> G -> G.

mult is assumed

In this declaration, Coq’s convention diverges slightly from the usual mathematical convention
that the binary group operator would be declared as a function · : G×G→ G. Let us dissect the
type of this declaration a bit. The main point to keep in mind is that in Coq, the -> operator has
“right associativity”, which means that G -> G -> G is interpreted as G -> (G -> G). Therefore,
mult is a function which takes in an element of G, and returns a function which takes in a second
element of G and returns the product in G.

Now if we want to write an application of one of these functions, we do it by writing first the
function name, and then the value we wish to input. We’ll present a few examples using the Check

directive. What this directive does is take in an expression, and tell you what type the expression
has; or if the expression doesn’t type check, it outputs an error indicating where it sees a problem.
For example, try the following Check directives:

3

Coq < Check (inv e).

inv e

: G

Coq < Check (mult e).

mult e

: G -> G

Coq < Check ((mult e) e).

mult e e

: G

Coq < Check (mult e e).

mult e e

: G

The last example here shows an interesting point: in Coq, function application has “left asso-
ciativity,” so that if we wish to apply a function with multiple arguments, we can just write the
function name followed by a list of the arguments. On the other hand, as the second example above
shows, Coq’s convention automatically allows for “partial application” of a function: in this exam-
ple, we specify the first argument of mult while leaving the second argument unspecified, resulting
in a function from G to G.

However, if any of the arguments of a function is a complex expression itself, we must enclose
it in parentheses. For example, if we try:

Coq < Check (mult inv e e).

Toplevel input, characters 12-15:

> Check (mult inv e e).

> ^^^

Error: The term "inv" has type "G -> G"

while it is expected to have type "G".

Here, Coq thinks we mean to feed the inv function itself as an argument to mult, which doesn’t
match the expected type G of the argument. By inserting parentheses around the call to inv e, we
can correct Coq’s interpretation so that the expression makes sense. So replace the faulty Check

directive with:

Coq < Check (mult (inv e) e).

mult (inv e) e

: G

Likewise:

Coq < Check (inv mult e e).

Toplevel input, characters 11-15:

> Check (inv mult e e).

> ^^^^

Error: The term "mult" has type "G -> G -> G"

while it is expected to have type "G".

4

Coq < Check (inv (mult e e)).

inv (mult e e)

: G

Now let’s move on to telling Coq about the group axioms we’ll be using. But before we do
that, note that it’s bad form in general to leave Check directives in a finished Coq script: they will
cause extraneous output to be printed if you need to go back and recompile the script. However,
CoqIde will not allow you to modify green highlighted text, as this could very likely invalidate
what’s already been verified. So first rewind the execution point before the Check directives you’ve
entered. You can do this either by pressing Ctrl+Alt+↑ (Ctrl+Alt+Cmd+↑ on Mac) repeatedly
until the green highlight does not include any of them, or by positioning the cursor just before the
first Check directive and then clicking on the “Go to cursor” button (it looks like a green arrow
pointing to a yellow sphere). Then go ahead and delete any Check directives you’ve entered.

Note that CoqIde has a feature to execute Check directives without inserting them into the
main script: select Queries → Check from the menu, and you’ll get a “Command Pane” at the
bottom. Then you can enter the expression to check in the edit box to the right, and press enter
or click “Ok” to execute the check. Once you’re done with this command pane, you can click on
the X button on the left to hide it. However, personally, I find this pane more cumbersome to work
with than just entering the Check directives directly and then cleaning them up.

Now go on to enter:

Coq < Axiom left id : forall x:G, mult e x = x.

left id is assumed

Coq < Axiom left inv : forall x:G, mult (inv x) x = e.

left inv is assumed

Coq < Axiom assoc : forall x y z:G,

Coq < mult x (mult y z) = mult (mult x y) z.

assoc is assumed

These declarations are fairly straightforward to read. One thing to note is that what comes
after the colon should be a proposition of type Prop:

Coq < Check (forall x:G, mult e x = x).

forall x : G, mult e x = x

: Prop

Also note that Coq makes a distinction between a proposition and the truth or falsehood of that
proposition. This is because in general, for example if G is an infinite group, it would be impossible
for Coq to compute whether a proposition involving forall or exists is true or not.

Note that already, in the declaration of the axiom assoc, writing the two expressions is slightly
cumbersome, and you might imagine that things will only get worse as we move to more and
more complex expressions. Fortunately, Coq allows us to declare that we want to write our group
multiplication operator using the built-in symbol *. So let’s rewind execution above the axiom
declarations and replace them with:

Coq < Infix "*" := mult.

Coq <

5

Coq < Axiom left id : forall x:G, e * x = x.

left id is assumed

Coq < Axiom left inv : forall x:G, inv x * x = e.

left inv is assumed

Coq < Axiom assoc : forall x y z:G, x * (y * z) = (x * y) * z.

assoc is assumed

You can now review the axioms if you wish using the Check directive. This can be useful if you
forgot the exact form you used to write the axiom, and you don’t want to go back and search for
the declaration:

Coq < Check left id.

left id

: forall x : G, e * x = x

Coq < Check left inv.

left inv

: forall x : G, inv x * x = e

Coq < Check assoc.

assoc

: forall x y z : G, x * (y * z) = x * y * z

In the last example, we see that * has left associativity, so Coq was able to leave out the parentheses
on the right hand side. This will allow us to write long products like a * b * c * d * e without
having to fully parenthesize the expression as (((a * b) * c) * d) * e.

One thing to note is that a * b is just shorthand notation for mult a b, and the two mean
exactly the same thing. In fact, Coq uses mult a b as its internal representation, and only uses
the notation when displaying expressions. If you want to see the internal representation, you can
do so by selecting “Display → Deactivate notations display” from the menu. If you do this, and
then retry the Check directives above, you’ll see:

Coq < Check left id.

left id

: forall x : G, eq (mult e x) x

Coq < Check left inv.

left inv

: forall x : G, eq (mult (inv x) x) e

Coq < Check assoc.

assoc

: forall x y z : G, eq (mult x (mult y z)) (mult (mult x y) z)

(This reveals that = is just another predefined notation for application of a built-in function eq.)

6

1.2 Proof mode

Now that we’ve declared the objects and axioms of the theory of a group, we’re ready to move on
to formalizing the bootstrapping of some of the other identities commonly used in groups. First,
clean up your Checks, and reenable notation display by selecting “Display → Deactivate notations
display” again.

Our first step is to prove the left cancellation property:

Coq < Proposition left cancel : forall x y z:G,

Coq < x * y = x * z -> y = z.

1 subgoal

============================

forall x y z : G, x * y = x * z -> y = z

Coq < Proof.

Note the use of the logical implication connective ->, which takes in two propositions P and Q and
returns the proposition P -> Q that P implies Q.

Once you execute the Proposition directive, CoqIde enters proof mode, and in the upper right
pane displays:

1 subgoal

______________________________________(1/1)

forall x y z : G, x * y = x * z -> y = z

At any point in constructing a proof, you can have some context for the current subgoal, and a list
of subgoals. In this example, the context is empty, and there’s one subgoal. What you need to do
is apply “proof tactics” to manipulate the current context and subgoal until you’ve discharged all
subgoals and there are no subgoals remaining.

The first thing we did was to execute the Proof directive. This directive doesn’t actually do
anything and is strictly speaking optional. However, it’s customary to use this to delimit the start
of the body of a “proof script” (which refers to the list of tactics which together resolve the initial
proof state to a completed proof state).

In many proofs, the first step will be to move all parameters and hypotheses from the statement
to be proved into the context. This is done using the intros tactic:

Coq < intros x y z Htocancel.

1 subgoal

x : G

y : G

z : G

Htocancel : x * y = x * z

============================

y = z

Note that if you just use “intros.” without any names, then Coq will autogenerate names such
as H, H0, H1, etc. for any hypotheses. However, giving explicit names is useful in longer proofs to

7

improve the readability of proof scripts, as well as aiding in updating proof scripts for changes in
definitions or the statements of previous results, so it’s a good habit to get into. (I have to admit
that I personally am not necessarily in this habit, but it often happens that I wish I were.)

Our proof will be to multiply each side of the hypothesis on the left by x−1. So our first step
will be to generate a new subgoal representing the result using the assert tactic:

Coq < assert (inv x * (x * y) = inv x * (x * z))

Coq < as Hinvx times tocancel.

2 subgoals

x : G

y : G

z : G

Htocancel : x * y = x * z

============================

inv x * (x * y) = inv x * (x * z)

subgoal 2 is:

y = z

Now we use the hypothesis Htocancel to replace x * y with x * z using the rewrite tactic:

Coq < rewrite Htocancel.

2 subgoals

x : G

y : G

z : G

Htocancel : x * y = x * z

============================

inv x * (x * z) = inv x * (x * z)

subgoal 2 is:

y = z

Since both sides of the equality to be proved are the same, we can finish this subgoal using the
reflexivity of equality:

Coq < reflexivity.

1 subgoal

x : G

y : G

z : G

Htocancel : x * y = x * z

Hinvx times tocancel : inv x * (x * y) = inv x * (x * z)

============================

y = z

8

Now that we’ve proved the assertion, it’s now available in the context of the original statement to
be proved, under the name we gave it.

Next, what we want to do is to use the group axioms to manipulate the hypothesis Hinvx times tocancel

until it reads the way we want:

Coq < rewrite assoc in Hinvx times tocancel.

Coq < rewrite assoc in Hinvx times tocancel.

Coq < rewrite left inv in Hinvx times tocancel.

Coq < rewrite left id in Hinvx times tocancel.

Coq < rewrite left id in Hinvx times tocancel.

1 subgoal

x : G

y : G

z : G

Htocancel : x * y = x * z

Hinvx times tocancel : y = z

============================

y = z

If you were paying close attention while executing these rewrites, you might have noticed that
rewriting using left inv rewrote in two places, while for the rewriting using assoc and left id,
each time it only did a rewrite in one place and we had to repeat it for the other place. The
reason for this is that rewrite searches for one special case of the proposition where the left hand
side occurs, and then for that particular left hand side, it replaces each occurrence in the target
with the right hand side. In this case, the two rewrites using assoc were using two different cases:
x−1(xy) = (x−1x)y and x−1(xz) = (x−1x)z. On the other hand, when we were rewriting using
left inv, in both places we were using the special case x−1x = e.

Now we have exactly what we wanted to prove as one of the hypotheses. So we finish off the
proof with:

Coq < assumption.

Proof completed.

Finally, there’s one step left: to finalize the proof and register the new result so that it can be
used in future proofs.

Coq < Qed.

intros x y z Htocancel.

assert (inv x * (x * y) = inv x * (x * z)) as Hinvx times tocancel.

rewrite Htocancel.

reflexivity.

rewrite assoc in Hinvx times tocancel.

rewrite assoc in Hinvx times tocancel.

rewrite left inv in Hinvx times tocancel.

9

rewrite left id in Hinvx times tocancel.

rewrite left id in Hinvx times tocancel.

assumption.

left cancel is defined

Overall, the proof script should look something like:

Proposition left_cancel :

forall x y z:G, x * y = x * z -> y = z.

Proof.

intros x y z Htocancel.

assert (inv x * (x * y) = inv x * (x * z))

as Hinvx_times_tocancel.

rewrite Htocancel.

reflexivity.

rewrite assoc in Hinvx_times_tocancel.

rewrite assoc in Hinvx_times_tocancel.

rewrite left_inv in Hinvx_times_tocancel.

rewrite left_id in Hinvx_times_tocancel.

rewrite left_id in Hinvx_times_tocancel.

assumption.

Qed.

Note the indentation for the proof of the assertion, and the separation between proofs for subgoals.
In general, there’s not necessarily any one best way to format proofs for readability, so whatever
format works for you should be fine.

At this point, it’s perhaps appropriate to explain a couple alternatives for the overall structure
of a Coq proof. The most straightforward way is usually to “work backwards” from the goal, using
tactics like apply, rewrite, assumption, or reflexivity. On the other hand, it is also possible to
“work forwards” from the hypotheses, using tactics like rewrite ... in H..., or apply ... in

H... (we’ll see an example of apply in later in this section).
In the proof above, we used a mixture of these two strategies. First, we used assert to establish

a “cut point” of the proof. Then we used argument backwards from the cut point to establish
this intermediate result. From there, we manipulated this cut point “forwards” from its original
statement until it read as we wanted.

Now that we’ve finished that proof, we’ll be able to use it in future proofs exactly as we’d use
the axioms. For example, you can Check its statement just as you would for an axiom:

Coq < Check left cancel.

left cancel

: forall x y z : G, x * y = x * z -> y = z

Next, let’s try another proof using this result:

Coq < Proposition right id :

Coq < forall x:G, x * e = x.

10

Coq < Proof.

Coq < intros.

1 subgoal

x : G

============================

x * e = x

The informal proof that we’ll formalize for Coq is: we will use left cancellation by x−1. To apply
this, we need to prove that x−1(x · e) = x−1(x). But both sides are equal to e, so the conclusion
follows.

The formalization for “use left cancellation by x−1” reads:

Coq < apply left cancel with (x:=inv x).

1 subgoal

x : G

============================

inv x * (x * e) = inv x * x

Here the x on the left hand side of the := refers to the variable name in the statement of left cancel,
while the right hand side inv x is an expression evaluated in the current context to use for special
casing left cancel. Note that Coq was able to infer the values of y and z to use in left cancel;
however, there’s no way to infer what value of x we want, so we had to specify that variable.

In general, the apply tactic will generate one subgoal for each hypothesis of the result being
applied. In this case, since left cancel has only one hypothesis, we’re left with one subgoal. We
now manipulate this term as usual:

Coq < rewrite assoc.

Coq < rewrite left inv.

1 subgoal

x : G

============================

e * e = e

At this point, we could proceed by rewriting using left id and then using reflexivity. How-
ever, in this case, we observe that the goal is precisely a special case of left id:

Coq < apply left id.

Coq < Qed.

Here, because left id has no hypotheses, there are no new subgoals to be proved.
By now, you should have the basic tools to be able to prove the rest. As practice, you might

want to try proving each proposition below yourself, before you enter the proofs presented in the
text (each of which will introduce new tactics to add to your repertoire).

11

Coq < Proposition right inv :

Coq < forall x:G, x * inv x = e.

Coq < Proof.

Coq < intros.

Coq < apply left cancel with (x := inv x).

Coq < rewrite assoc.

Coq < rewrite left inv.

Coq < rewrite left id.

1 subgoal

x : G

============================

inv x = inv x * e

This isn’t quite in the form of right id: so if you try to apply right id now, Coq will give an
error like

Coq < apply right id.

Toplevel input, characters 6-14:

> apply right id.

> ^^^^^^^^

Error: Impossible to unify "?96 * e = ?96" with "inv x = inv x * e".

So, to manipulate the goal into the required form, we will first use the symmetry tactic to switch
the two sides of the equality:

Coq < symmetry.

1 subgoal

x : G

============================

inv x * e = inv x

Coq < apply right id.

Proof completed.

Coq < Qed.

Next, we prove an auxiliary result which we’ll use for proving properties of the inverse function:

Coq < Proposition right inv unique :

Coq < forall x y:G, x * y = e -> inv x = y.

Coq < Proof.

Coq < intros.

Coq < apply left cancel with (x := x).

12

1 subgoal

x : G

y : G

H : x * y = e

============================

x * inv x = x * y

At this point, we choose to use the transitivity tactic. Given a goal of the form LHS = RHS, using
transitivity intermed. will generate two subgoals of the form LHS = intermed and intermed

= RHS. So in this case:

Coq < transitivity e.

2 subgoals

x : G

y : G

H : x * y = e

============================

x * inv x = e

subgoal 2 is:

e = x * y

Coq < apply right inv.

Coq <

Coq < symmetry.

Coq < assumption.

Coq < Qed.

Using this result, proving that (x−1)−1 = x is straightforward:

Coq < Proposition inv involution :

Coq < forall x:G, inv (inv x) = x.

Coq < Proof.

Coq < intros.

Coq < apply right inv unique.

Coq < apply left inv.

Coq < Qed.

Similarly:

Coq < Proposition inv prod :

Coq < forall x y:G, inv (x*y) = inv y * inv x.

Coq < Proof.

13

Coq < intros.

Coq < apply right inv unique.

Coq < rewrite assoc.

1 subgoal

x : G

y : G

============================

x * y * inv y * inv x = e

Coq < rewrite right inv.

Toplevel input, characters 0-17:

> rewrite right inv.

> ^^^^^^^^^^^^^^^^^

Error: Found no subterm matching "?133 * inv ?133" in the current goal.

But the goal, x * y * inv y * inv x = e, has “y * inv y” right there! What’s the problem
here?

To answer this question, you need to remember that * is interpreted as a left associative operator.
Thus, the goal actually means the same thing as ((x * y) * inv y) * inv x = e, which doesn’t
literally contain y * inv y as a subterm. To fix this, we’ll need to rewrite from the right hand side
of the axiom assoc to the left hand side; so replace the last line with:

Coq < rewrite <- assoc.

1 subgoal

x : G

y : G

============================

x * y * (inv y * inv x) = e

Well, this wasn’t what we wanted. We’ll have to help Coq by being a bit more specific about
which instance of the axiom to use; so rewind and replace the last line again with:

Coq < rewrite <- assoc with (z := inv y).

1 subgoal

x : G

y : G

============================

x * (y * inv y) * inv x = e

Now the goal has the term we want to rewrite using right inv, and the rest of the proof is
straightforward:

Coq < rewrite right inv.

Coq < rewrite right id.

14

(On the last line, rewrite left id would not have worked. Why not?)

Coq < apply right inv.

Coq < Qed.

1.3 Definitions

Coq also lets you write definitions based on the group operations:

Coq < Definition commutator : G -> G -> G :=

Coq < fun x y:G => x * y * inv x * inv y.

commutator is defined

We can also define a notation for the commutator operation:

Coq < Notation "[x , y]" := (commutator x y).

Setting notation at level 0.

Here the spacing inside the quotes is important: each name of a “parameter” of the notation must
be in a word by itself.

Now let us see how to work with definitions in proofs:

Coq < Proposition commutator inv :

Coq < forall x y:G, inv [x, y] = [y, x].

Coq < Proof.

Coq < intros.

1 subgoal

x : G

y : G

============================

inv [x, y] = [y, x]

In order to proceed, we need to expand the definition of the commutator using the unfold tactic:

Coq < unfold commutator.

1 subgoal

x : G

y : G

============================

inv (x * y * inv x * inv y) = y * x * inv y * inv x

From here, the manipulations to complete the proof are straightforward:

Coq < rewrite inv prod.

Coq < rewrite inv prod.

15

Coq < rewrite inv prod.

Coq < rewrite inv involution.

Coq < rewrite inv involution.

Coq < rewrite assoc.

Coq < rewrite assoc.

Coq < reflexivity.

Coq < Qed.

Note that in this case, it was starting to get tedious having to repeat the same tactic over and
over. We can reduce this tedium by using repeat: if T is a proof tactic, then repeat T will execute
T repeatedly until it fails. So, for example, we can rewrite the proof script above as:

Coq < Proposition commutator inv:

Coq < forall x y:G, inv [x, y] = [y, x].

Coq < Proof.

Coq < intros.

Coq < unfold commutator.

Coq < repeat rewrite inv prod.

Coq < repeat rewrite inv involution.

Coq < repeat rewrite assoc.

Coq < reflexivity.

Coq < Qed.

Similarly to definitions of functions, we can write definitions of propositions:

Coq < Definition commutes with : G -> G -> Prop :=

Coq < fun x y:G => x * y = y * x.

commutes with is defined

This is a function which takes two arguments x, y ∈ G and returns the proposition that x commutes
with y. Now, for an example of working with this definition:

Coq < Proposition product commutes :

Coq < forall x y z:G, commutes with x z -> commutes with y z ->

Coq < commutes with (x * y) z.

Coq < Proof.

Coq < intros x y z Hxz comm Hyz comm.

1 subgoal

x : G

16

y : G

z : G

Hxz comm : commutes with x z

Hyz comm : commutes with y z

============================

commutes with (x * y) z

(Note the syntax for multiple hypotheses. The -> implication operator is interpreted using right
associativity, just as the -> function type operator is. Thus, the statement of the proposition is
literally interpreted as: “for any x, y, z ∈ G, x commuting with z implies the proposition that y
commuting with z implies that x · y commutes with z.”)

Now we unfold what we need to prove using:

Coq < red.

1 subgoal

x : G

y : G

z : G

Hxz comm : commutes with x z

Hyz comm : commutes with y z

============================

x * y * z = z * (x * y)

This tactic unfolds the top-level function application in its target (the current subgoal by default
— you could also use, for example, “red in Hxz comm.”) Therefore, in this case, it would have
been equivalent to write “unfold commutes with.”

From here, the necessary manipulations are straightforward:

Coq < rewrite <- assoc.

Coq < rewrite Hyz comm.

Note that even though we haven’t unfolded the definition of commutes with in Hyz comm, we were
still able to reuse it in rewrite. In general, Coq is often able to unfold definitions internally in
tactics like rewrite, apply or even reflexivity, so that you do not need to unfold them manually
and unnecessarily clutter the proof context.

Coq < rewrite assoc.

Coq < rewrite Hxz comm.

Coq < rewrite assoc.

Coq < reflexivity.

Coq < Qed.

Note that Coq also provides a shorthand notation for defining functions. For example, we could
have written the definitions above as:

17

Coq < Definition commutator2 (x y:G) : G :=

Coq < x * y * inv x * inv y.

commutator2 is defined

Coq < Definition commutes with2 (x y:G) : Prop :=

Coq < x * y = y * x.

commutes with2 is defined

Internally, these definitions mean exactly the same thing as the previous definitions:

Coq < Print commutator2.

commutator2 = fun x y : G => x * y * inv x * inv y

: G -> G -> G

Coq < Print commutes with2.

commutes with2 = fun x y : G => x * y = y * x

: G -> G -> Prop

On the other hand, the fun notation can be used anywhere a function needs to be input as an
argument of another function or a parameter of a previously proved result, without necessarily
needing to give that function a name. For example, in the first proof of left cancel above, we
could have used the built-in result f equal, which states that if x = y, then f(x) = f(y):

Coq < Proposition left cancel alt proof : forall x y z:G,

Coq < x * y = x * z -> y = z.

Coq < Proof.

Coq < intros x y z Htocancel.

1 subgoal

x : G

y : G

z : G

Htocancel : x * y = x * z

============================

y = z

Coq < apply f equal with (f := fun g:G => inv x * g) in Htocancel.

1 subgoal

x : G

y : G

z : G

Htocancel : inv x * (x * y) = inv x * (x * z)

============================

y = z

. . . and so on, with the same rewrites as before. (Note that in this particular case, we could have
used a “partially applied” function, so that

Coq < apply f_equal with (f := mult (inv x)).

would have exactly the same effect.)

18

1.4 Exercises

1. Prove:
Proposition right cancel : forall x y z:G,

x * z = y * z -> x = y.

Your proof should use f equal as above, instead of assert as in the first proof of left cancel.

2. Prove:

(a) Proposition commutator e impl commutes :

forall x y:G, [x, y] = e -> commutes with x y.

(b) Proposition commutes impl commutator e :

forall x y:G, commutes with x y -> [x, y] = e.

3. (a) Define the conjugation operation where xy := y−1xy, and then define a notation for
conjugation using the built-in symbol ^.

(b) State and prove the following identities:

i. xz · yz = (xy)z.

ii. ey = e.

iii. xe = x.

iv. (x−1)y = (xy)−1.

v. (xy)z = xyz.

19

	First steps
	Declarations and types
	Proof mode
	Definitions
	Exercises

