
1

Along the GNU/Hurd RPC way

A starting guide to contributing to the GNU Hurd

Samuel Thibault

2015 February 1st

2

It's all about freedom #0

“The freedom to run the program, for any purpose”

I.e.:
● Freedom from sysadmin!

● WTH is fdisk/mke2fs/... hidden in /sbin?
● I should be able to just work with my disk/network access

● Freedom to innovate
● Experimental filesystem, personal work-flow, new kind of

process combination,...

● Also provide freedom from misbehaving programs and
drivers

3

It's all about freedom #0

From: xxx <xxx@yyy.fr>

Subject: Network expertise

Date: Thu, 31 Jan 2013 12:37:34 +0100

[…] Would it be possible to route to my VPN the
traffic of only one application?

Actually, also well-known classical issue of full-VPN: traffic of the
VPN itself shouldn't go through the VPN!

And yet, here root capabilities!!

Spoiler: Yes, GNU/Hurd can already do it. Without even asking root.

mailto:xxx@yyy.fr

4

It's all about freedom #0

Extensibility for the user
● Mount one's own files

● Access archives content
● Access remote files
● Experiment with filesystems

● Access one's own network
● Access remote networks / VPN
● Access virtual machine network

● Redirect one's sound
● Through network
● Sound effects
● Recording

● …
● and Flexible hardware support

7

Outline

note: Start downloading glibc, hurd, gnumach
source code now
● Hurd architecture Overview
● Flexibility, flexibility, flexibility!
● 3 Hurdish paths

● ext2fs example
● pflocal example
● gnumach example

● Present & future

15

Micro-kernel layering

pfinet
proc

auth
ext2fs

root user

sh

cp

Kernel Tasks, memory, IPC

16

Micro-kernel layering

pfinet
proc

auth
ext2fs

root user

sh

cp

Kernel Tasks, memory, IPC

17

Micro-kernel layering

● Server crash? Not a problem
● “Computer bought the farm” is just an error, not

something-of-the-death

● Easier to debug/tune
● Just run gdb, gprof, …

● Can dare crazy things
● The Hurd console has dynamic font support

– See chinese support in pseudo-graphical mode (actually
pure VGA textmode!) of Debian installer.

● Kernel only handles Tasks, memory, IPC

18

Hurd possibilities

isofs

Kernel

pfinet
proc

auth
ext2fs

root user

sh

cp
ftpfs

19

Hurd possibilities

 € settrans ­c ~/ftp: /hurd/hostmux /hurd/ftpfs /

(just once for good)

 € settrans ­a ~/mnt /hurd/iso9660fs
~/ftp://ftp.gnu.org/old­gnu/gnu­f2/hurd­F2­main.iso

 € ls ~/mnt

README­or­FAIL

…

● Only downloads what is needed.
● Can be permanently stored in ext2fs
 € settrans ~/.signature /hurd/run /usr/games/fortune

20

How does it work?

isofs

Kernel

pfinet
proc

auth
ext2fs

root user

ftpfs
sh

cplibc

libc

21

Rationale

- Everything is an (interposable) RPC

- Translators exposed in the FS
● The user gets to decide what/how to interpose

● Without need for costly ptrace or fragile libc symbols
interposition.

● Native fakeroot/chroot
● Fully virtualized and fine-grained interface

● Just need to use what's provided by the admin, e.g.
● $HOME/
● TCP/IP stack

 and pile over it

22

Example: interpose
TCP/IP stack

 € settrans ­ca $HOME/servers/socket/2
 /hurd/pfinet ­i $HOME/servers/tun0

 € openvpn … $HOME/servers/tun0 &

 € remap /servers/socket/2
 $HOME/servers/socket/2

 €€€ wget www.gnu.org

● My own translator
● Can plug my own VPN software
● Only wget accesses it (well, the shell too :))

23

But also

 € remap /bin/sh $HOME/bin/sh

 € remap /bin $HOME/unionbin

…

● Check out Stow/Nix/Guix!

24

Hurd possibilities (cont'ed)

open
 vpn

Kernel

root

pfinet

ext2fs
auth

proc

ftpfs

isofspfinet
user

ext2fs

part
sh

cp

25

Hurd possibilities (cont'ed)

i.e. ISO image inside a partitioned disk image
on ftp over a VPN

open
 vpn

Kernel

root

pfinet

ext2fs
auth

proc

ftpfs

isofspfinet
user

ext2fs

part
sh

cp

50

Normal file path
ext2fs

51

ext2fs example

Bug report: “UTIME_NOW/OMIT are not defined”
(for wine)

int fd;

struct timespec times[2];

fd = open (“foo.txt”, O_WRONLY);

times[0].tv_sec = time(NULL);

times[0].tv_nsec = 42424242;

times[1].tv_nsec = UTIME_OMIT;

futimens (fd, ts);

52

ext2fs example

RPC principle
● Open a connection
● Run RPCs over it
● Close the connection

Here,
● fd = open(“foo.txt”);
● futimens(fd);
● close(fd);

53

ext2fs example

Opening the connection
● foo.txt is a normal file

 € showtrans foo.txt

● foo.txt is in the current directory
● The current directory is served by ext2fs:

 € fsysopts .

ext2fs device:sd1

● So open(“foo.txt”) actually connects to ext2fs

54

ext2fs example

pfinet
proc

auth
ext2fs

root

Kernel Tasks, memory, IPC

user

test

55

ext2fs example

RPC being run
● See futimens() source code in glibc

/usr/src/glibc€ find . -name futimens.c

./io/futimens.c

./sysdeps/mach/hurd/futimens.c ← that's it!

./sysdeps/unix/sysv/linux/futimens.c

● Basically just does
__file_utimes (port, atime, mtime);

● port is the low-level RPC port behind fd

● This is an RPC! Let's now look for the server side

http://www.gnu.org/

56

ext2fs example

/usr/src/hurd€ rgrep file_utimes .

./hurd/fs.defs:routine file_utimes (

…

./libdiskfs/file-utimes.c:diskfs_S_file_utimes (struct protid...

./libtreefs/s-file.c:treefs_S_file_utimes (struct treefs_protid...

./libtrivfs/file-utimes.c:trivfs_S_file_utimes (struct trivfs_protid...
● but no ext2fs?!

/usr/src/hurd€ ldd /hurd/ext2fs

libdiskfs.so.0.3 => /lib/i386-gnu/libdiskfs.so.0.3 (0x01086000)

→ it's libdiskfs/file-utimes.c

57

ext2fs example

diskfs_S_file_utimes (... cred, ... atime, ... mtime) {

 …

 if (atime.microseconds == -1)

 …

 else {

 np->dn_stat.st_atim.tv_sec = atime.seconds;

 …

 }

 ...

So it's -1!

58

ext2fs example

Exercice for the audience
● Add #defines for UTIME_NOW and UTIME_OMIT to

glibc/sysdeps/mach/hurd/bits/stat.h, see
glibc/sysdeps/unix/sysv/linux/bits/stat.h for an
example

● Add code to ./sysdeps/mach/hurd/futimens.c to
handle the UTIME_NOW case.

● Add code to ./sysdeps/mach/hurd/futimens.c to put
-1 in structure for the RPC in the UTIME_OMIT
case.

● Test, enjoy, polish, submit!

59

socket path
pflocal

60

pflocal example

Bug report: “setsockopt(SO_SNDBUF) returns
ENOPROTOOPT on PF_LOCAL sockets” (for
globus-gram-job-manager)

int f;

int size = 1024;

f = socket (PF_LOCAL, SOCK_STREAM, 0);

if (setsockopt (f, SOL_SOCKET,
SO_SNDBUF, &size, sizeof (size)) < 0)

 perror ("setsockopt");

61

pflocal example

RPC principle
● Open a connection
● Run RPCs over it
● Close the connection

Here,
● fd = socket(PF_LOCAL);
● setsockopt(fd, SOL_SOCKET, SO_SNDBUF);
● close(fd);

62

pflocal example

What server will that be?
● ext2fs case was easy: file name, showtrans /

fsysopts.
● socket case more involved
● socket()'s source code:

/usr/src/glibc€ find . -name socket.c

./socket/socket.c

./sysdeps/mach/hurd/socket.c

63

pflocal example

__socket (domain, type, protocol) {

 socket_t sock, server;

 server = _hurd_socket_server (domain, 0);

 __socket_create (server, type, protocol, &sock);

 return _hurd_intern_fd (sock, …);

}

socket_t is a typedef for the port type, so:
● get a port to a server
● RPC on it to get a port
● that will be the socket

64

pflocal example

hurd_socket_server (int domain, int dead) {

 … /* Code which basically does: */

 char name[sizeof (_SERVERS_SOCKET) + 100];

 sprintf (name, “%s/%d”, _SERVERS_SOCKET, domain);

 server = __file_name_lookup (name, 0, 0);

 return server;

}
● _SERVERS_SOCKET is #defined to “/servers/socket”
● __file_name_lookup is what open() calls
● domain is PF_LOCAL, which is #defined to 1

→ it's merely opening /servers/socket/1

pflocal example

€ showtrans /servers/socket/1

/hurd/pflocal

→ it's translated by pflocal!

Kernel Tasks, memory, IPC

user

test

pfinet
proc

auth
ext2fs

root

pflocal

pflocal example

RPC being run

/usr/src/glibc€ find . -name setsockopt.c

./socket/setsockopt.c

./sysdeps/mach/hurd/setsockopt.c
● basically calls __socket_setopt on the port, i.e. an RPC

/usr/src/hurd€ grep -r socket_setopt .

./hurd/socket.defs:routine socket_setopt (

./pflocal/socket.c:S_socket_setopt (struct sock_user …

./pfinet/socket-ops.c:S_socket_setopt (struct sock_user …

pflocal example

S_socket_setopt (user, level, opt, value, value_len) {

 …

 switch (level)

 {

 default:

 ret = ENOPROTOOPT;

 break;

 }

 …

}

pflocal example

Exercice for the audience
● Add SOL_SOCKET and SO_SNDBUF cases in

 S_socket_setopt
● Notice that pflocal actually just uses libpipe for

its buffering
● Find the “write_limit” buffer size in libpipes
● Implement there dynamically changing it
● Plug that into S_socket_set/getopt()
● Test, enjoy, polish, submit!

Memory management
gnumach

gnumach example

Bug report: “mlock() as non-root always returns
EPERM” (for gnome-keyring)

char s[128];

if (mlock (&s, sizeof(s)) < 0)

perror ("mlock");

/usr/src/glibc€ find . -name mlock.c

./misc/mlock.c

./sysdeps/mach/hurd/mlock.c

gnumach example

mlock (address, len) {

 mach_port_t hostpriv;

 __get_privileged_ports (&hostpriv, NULL);

 …

 __vm_wire (hostpriv, __mach_task_self(), page, len,
VM_PROT_READ);

 …

}
● __get_privileged_ports returns a port
● we make an RPC on it.

Hurd hackers know hostpriv is usually gnumach, but let's see how!

gnumach example

__get_privileged_ports (host_priv_ptr, device_master_ptr) {

 …

 __USEPORT (PROC, __proc_getprivports (port,
&_hurd_host_priv, &_hurd_device_master));

 …

 *host_priv_ptr = _hurd_host_priv;

 …

}

gnumach example

pfinet
proc

auth
ext2fs

root

Kernel Tasks, memory, IPC

user

test

So we're actually first talking with the proc server

Because gnumach knows nothing about uids!

proc knows whether process is uid 0 and thus allowed to
access the gnumach privileged port

gnumach example

/usr/src/hurd€ rgrep proc_getprivports

hurd/process.defs:routine proc_getprivports (

proc/host.c:S_proc_getprivports (struct proc *p,

S_proc_getprivports (p, hostpriv, devpriv) {

 if (! check_uid (p, 0))

 return EPERM;

 *hostpriv = _hurd_host_priv;

 *devpriv = _hurd_device_master;

 return 0;

}

gnumach example

proc
● started at system bootstrap
● passed the privileged port at that time
● checks uid

Why doing that way?
● Consider a sub-hurd

● Control whether processes there can mlock()

gnumach example

Ok, so it's a gnumach RPC

/usr/src/gnumach€ rgrep vm_wire

./include/mach/mach_host.defs:routine vm_wire(

./vm/vm_user.c:kern_return_t vm_wire(host, map, start, size, …

vm_wire (host, map, start, size, access) {

 if (host == HOST_NULL)

 return KERN_INVALID_HOST;

 …

 return vm_map_pageable_user (...);

}

gnumach example

So, what do we need to do?
● gnumach controls whether allowed or not.
● Don't want to let all processes mlock() a lot of

memory
● ulimit ­l, i.e. setrlimit
(RLIMIT_MEMLOCK) controls how much is
allowed for non-root, 64K by default

● Ideally, plug glibc's setrlimit() with gnumach
● As a first step, default to 64K

gnumach example

Exercise for the audience
● Add per-task vm_wire() counter to gnumach
● Allow tasks passing host == NULL to vm_wire()

as much as 64K
● Patch setrlimit to advertise 64K as being fixed

(for now).
● Test, enjoy, polish, submit!

State, news, future, etc.

80

Current State

Hardware support
● i686
● start of 64bit support

● Kernel boots completely, now missing RPC 32/64bit translation

● DDE Linux 2.6.32 drivers layer for network boards
● In userland netdde translator!

● IDE, Xorg, …
● AHCI driver for SATA (up to 2TiB disk support btw)
● Xen PV domU

● Required GNU Mach changes only

● No USB, no sound yet

81

Current State

Software support
● Quite stable

● Have not reinstalled boxes for years.
● Debian buildds keep building packages, no hang after

weeks!

● ~81% of Debian archive builds out of tree
● XFCE, almost gnome, almost KDE
● Firefox (aka iceweasel), gnumeric, …

● Standard native Debian Installer

82

Recent work

Special thanks to Justus Winter!!
● Init system decoupled

● Allows to use standard Debian sysvinit scripts!
● Using dmd for Guix & such

● Distributed mtab translator
● Various optimizations

● Protected payloads
● Lockless implementations
● Paging management
● Message dispatch

● Valgrind start-of-port

83

Releases

● Nice 0.401 release on April 2011.
● Arch Hurd LiveCD release on August 2011.

● Released Debian-unofficial wheezy/sid
snapshot CDs on May 2013 \o/

● Hurd 0.5 released on 2013 Sept 27th \O/
● Just in time for GNU's 30th birthday!

● Will soon release Debian-unofficial jessie/sid
snapshot CDs

84

Future work

● Xen PVH support, X86_64 support
● Language bindings for translators (ADA?)
● Read-ahead
● {hdd,sound,usb}dde?
● GNU system: Guix/Hurd?
● Startup in scheme?
● Rump drivers?
● Your own pet project?

87

Thanks!

● http://hurd.gnu.org/

● http://www.debian.org/ports/hurd/

● http://people.debian.org/~mbanck/debian-hurd.pdf

● The increasing irrelevance of IPC performance for
microkernel-based Operating Systems

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.9653&rep=rep1&type=pdf

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 7
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 87

