$Debian - L_{\sf ocal} A_{\sf rea} N_{\sf etwork}$ Deploy Debian in your Network the Easy and Flexible Way

Andreas B. Mundt andi@debian.org

DebConf13, Vaumarcus, Switzerland

17 August 2013

Debian, the Universal Operating System

The Universal Operating System ??!!

Installing Individual Machines with the Debian Installer

The installation and configuration of a single, individual machine has been made easy by the Debian-Installer:

Debian in Enterprises

The deployment of a whole system environment with centralized user and machine management, intranet, etc. is more involved. It is usually the realm of professional full-time system administration:

- schools
- work groups
- small enterprises
- NGOs
- associations
- home network
- test environments
- 0 . . .

- schools
- work groups
- small enterprises
- NGOs
- associations
- home network
- test environments
- 0 . . .

- schools
- work groups
- small enterprises
- NGOs
- associations
- home network
- test environments
- . . .

- schools
- work groups
- small enterprises
- NGOs
- associations
- home network
- test environments
- ...

- schools
- work groups
- small enterprises
- NGOs
- associations
- home network
- test environments
- ...

- schools
- work groups
- small enterprises
- NGOs
- associations
- home network
- test environments
- 0 ...

- schools
- work groups
- small enterprises
- NGOs
- associations
- home network
- test environments

- schools
- work groups
- small enterprises
- NGOs
- associations
- home network
- test environments
- •

A system setup for:

- schools
- work groups
- small enterprises
- NGOs
- associations
- home network
- test environments
- . .

⇒ Debian Local Area Network

Debian, the Universal Operating System!

- Debian, the Universal Operating System
- Quality Challenges and Status of Debian-LAN
- 3 How is it done? The Debian-LAN Installation
- The Debian-LAN FAI Classes
- 5 Summary and Conclusions

- Debian, the Universal Operating System
- Goals, Challenges and Status of Debian-LAN
- 3 How is it done? The Debian-LAN Installation
- 4 The Debian-LAN FAI Classes
- 5 Summary and Conclusions

- Debian, the Universal Operating System
- Quality Challenges and Status of Debian-LAN
- 3 How is it done? The Debian-LAN Installation
- 4) The Debian-LAN FAI Classes
- 5 Summary and Conclusions

- Debian, the Universal Operating System
- Quality Challenges and Status of Debian-LAN
- 3 How is it done? The Debian-LAN Installation
- The Debian-LAN FAI Classes
- 5 Summary and Conclusions

- Debian, the Universal Operating System
- Quality Challenges and Status of Debian-LAN
- 3 How is it done? The Debian-LAN Installation
- The Debian-LAN FAI Classes
- 5 Summary and Conclusions

Overview

- 1 Debian, the Universal Operating System
- Quality Challenges and Status of Debian-LAN
- 3 How is it done? The Debian-LAN Installation
- 4) The Debian-LAN FAI Classes
- 5 Summary and Conclusions

The goal of the "Debian Local Area Network"-Project is to make setting up a local network as easy as possible in Debian.

Challenges

simple installation/setup, maintenance and upgrade installation/setup.

flexibility to implement local modifications and extensions

only use Debian stable repositories

The goal of the "Debian Local Area Network"-Project is to make setting up a local network as easy as possible in Debian.

Challenges:

- simple installation/setup, maintenance and upgrade
- flexibility to implement local modifications and extensions
- only use Debian stable repositories

The goal of the "Debian Local Area Network"-Project is to make setting up a local network as easy as possible in Debian.

Challenges:

- simple installation/setup, maintenance and upgrade
- flexibility to implement local modifications and extensions
- only use Debian stable repositories

The goal of the "Debian Local Area Network"-Project is to make setting up a local network as easy as possible in Debian.

Challenges:

- simple installation/setup, maintenance and upgrade
- flexibility to implement local modifications and extensions
- only use Debian stable repositories

- gateway:
 - firewall, masquerading
- mainserver (provides all services)
 - authentication (Kerberos)
 - directory service (LDAP)
 - kerberized NFSv4 homes
 - email: SMTP/IMAP Server
 - . . .
- workstation (desktop):
 - ► Gnome, KDE, Xfce, LXDE, ...
 - customized package selection
- diskless (workstation):
 - root-FS mounted from mainserver, PXE-boot
- roaming (workstation):
 - credentials cached for off-line use

- gateway:
 - firewall, masquerading
- mainserver (provides all services):
 - authentication (Kerberos)
 - directory service (LDAP)
 - kerberized NFSv4 homes
 - email: SMTP/IMAP Server
- workstation (desktop):
 - ► Gnome, KDE, Xfce, LXDE, ...
 - customized package selection
- diskless (workstation):
- - credentials cached for off-line use

diskless workstation

- gateway:
 - firewall, masquerading
- mainserver (provides all services):
 - authentication (Kerberos)
 - directory service (LDAP)
 - kerberized NFSv4 homes
 - email: SMTP/IMAP Server
 - **>** ...
- workstation (desktop):
 - Gnome, KDE, Xfce, LXDE, . . .
 - customized package selection
 - diskless (workstation):
 - root-FS mounted from mainserver, PXE-boot
 - roaming (workstation):
 - credentials cached for off-line use

diskless workstation

LAN

- gateway:
 - firewall, masquerading
- mainserver (provides all services):
 - authentication (Kerberos)
 - directory service (LDAP)
 - kerberized NFSv4 homes
 - email: SMTP/IMAP Server
 - **...**
- workstation (desktop):
 - ► Gnome, KDE, Xfce, LXDE, ...
 - customized package selection
- diskless (workstation):
 - root-FS mounted from mainserver, PXE-boot
- roaming (workstation):
 - credentials cached for off-line use

diskless workstation

LAN

- gateway:
 - firewall, masquerading
- mainserver (provides all services):
 - authentication (Kerberos)
 - directory service (LDAP)
 - kerberized NFSv4 homes
 - email: SMTP/IMAP Server
 - **>** ...
- workstation (desktop):
 - ► Gnome, KDE, Xfce, LXDE, ...
 - customized package selection
- diskless (workstation):
 - root-FS mounted from mainserver, PXE-boot
- roaming (workstation):
 - credentials cached for off-line use

diskless workstation

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- o ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
- . . .

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- o ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
- . . .

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
- . . .

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- o ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
- . . .

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
-

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE) ∅
- . . .

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
- . . .

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
- . . .

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
- . . .

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
- . . .

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
- . . .

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE) ∅
- . . .

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
- . . .

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
- . . .

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
-

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
-

- DNS and DHCP
- Kerberos KDC
- LDAP
- home directories distributed via kerberized NFSv4
- GOsa for user management
- kerberized local email: exim, dovecot
- intranet (users' homepages)
- ICINGA and Munin system monitoring

- disk quota
- proxy (Squid)
- apt-cacher-ng
- local APT repository
- firewall (shorewall)
- etckeeper
- system backup (dirvish)
- network installation / FAI server (PXE)
- . . .

Overview

- 1 Debian, the Universal Operating System
- Quality Challenges and Status of Debian-LAN
- 3 How is it done? The Debian-LAN Installation
 - Fully Automatic Installation (FAI)
 - Class Concept
 - Installation Procedure
 - Using FAI to Install the Debian-LAN System
- The Debian-LAN FAI Classes
- 5 Summary and Conclusions

What is the information needed to install any arbitrary machine?

 \cdot set up software storage media \longrightarrow disk partitions

package selection

configure system:

- lacktriangledown set up software storage media \longrightarrow disk partitions
- 2 package selection
- 3 configure system:
 - debconf preseeding
 - edit/manipulate configuration

- lacktriangledown set up software storage media \longrightarrow disk partitions
- package selection
- configure system:
 - debconf preseeding
 - ▶ edit/manipulate configuration

- lacktriangledown set up software storage media \longrightarrow disk partitions
- package selection
- configure system:
 - debconf preseeding
 - edit/manipulate configurations

- lacktriangledown set up software storage media \longrightarrow disk partitions
- package selection
- configure system:
 - debconf preseeding
 - edit/manipulate configurations

- lacktriangledown set up software storage media \longrightarrow disk partitions
- package selection
- configure system:
 - debconf preseeding
 - edit/manipulate configurations

What is the information needed to install any arbitrary machine?

- lacktriangledown set up software storage media \longrightarrow disk partitions
- package selection
- configure system:
 - debconf preseeding
 - edit/manipulate configurations

This information should be provided in a well-structured and flexible way.

⇒ Use FAI (Fully Automatic Installation)!

What is the information needed to install any arbitrary machine?

- lacktriangledown set up software storage media \longrightarrow disk partitions
- package selection
- configure system:
 - debconf preseeding
 - edit/manipulate configurations

This information should be provided in a well-structured and flexible way.

⇒ Use FAI (Fully Automatic Installation)!

Fully Automatic Installation (FAI): Class Concept

FAI's class concept:

- every hostname is mapped on a set of classes
- classes define the complete setup:
 - ▶ actions (partitioning, package selection, ...)
 - ▶ configuration (debconf, scripts, ...)
- classes are defined in the FAI config space

FAI config space¹ (top level):

Fully Automatic Installation (FAI): Class Concept

FAI's class concept:

- every hostname is mapped on a set of classes
- classes define the complete setup:
 - actions (partitioning, package selection, . . .)
 - ▶ configuration (debconf, scripts, ...)
- classes are defined in the FAI config space

FAI config space¹ (top level):

```
-- config
    |-- class/
                        (map hostname to classes, define variables)
    |-- debconf/
                        (populate debconf database, preseeding)
    |-- disk_config/
                        (define the hard disk setup)
    |-- files/
                        (files to be copied to the target machine)
    |-- hooks/
                        (hooks to be run during installation)
    |-- package config/
                        (package selection to be installed)
    |-- scripts/
                        (scripts to be run after installation)
    '-- tests/
                        (final test, verbose logging of actions)
```

Fully Automatic Installation (FAI): Examples

Example: The host 'gateway' is associated with the following classes:

FAIBASE DEBIAN DHCPC FIREWALL GATEWAY_A

All packages defined in these classes will be installed and configured accordingly.

Example: What happens to hosts associated with the FIREWALL class?

- package 'shorewall' will be installed
- the firewall will be configured

Fully Automatic Installation (FAI): Examples

Example: The host 'gateway' is associated with the following classes:

FAIBASE DEBIAN DHCPC FIREWALL GATEWAY_A

All packages defined in these classes will be installed and configured accordingly.

Example: What happens to hosts associated with the FIREWALL class?

- package 'shorewall' will be installed
- the firewall will be configured

- boot FAI live system (CD/USB or PXE) on the target machine
- mount FAI config space on the live system
- map hostname to set of classes
- install the target machine dependent on its classes:
 - partition local hard disk.
 - configure packages (debconf database)
 - install packages
 - configure target system (run scripts)
- reboot from the local hard disk

- boot FAI live system (CD/USB or PXE) on the target machine
- mount FAI config space on the live system
- map hostname to set of classes
- install the target machine dependent on its classes:
 - partition local hard disk
 - configure packages (debconf database)
 - install packages
 - configure target system (run scripts)
- reboot from the local hard disk

- boot FAI live system (CD/USB or PXE) on the target machine
- mount FAI config space on the live system
- map hostname to set of classes
- install the target machine dependent on its classes:
 - partition local hard disk
 - zonfigure packages (debconf database)
 - install packages
 - configure target system (run scripts)
- reboot from the local hard disk

- boot FAI live system (CD/USB or PXE) on the target machine
- mount FAI config space on the live system
- map hostname to set of classes
- install the target machine dependent on its classes:
 - partition local hard disk
 - configure packages (debconf database)
 - install packages
 - configure target system (run scripts)
- reboot from the local hard disk

- boot FAI live system (CD/USB or PXE) on the target machine
- mount FAI config space on the live system
- map hostname to set of classes
- install the target machine dependent on its classes:
 - partition local hard disk
 - configure packages (debconf database)
 - install packages
 - configure target system (run scripts)
- reboot from the local hard disk

- boot FAI live system (CD/USB or PXE) on the target machine
- mount FAI config space on the live system
- map hostname to set of classes
- install the target machine dependent on its classes:
 - partition local hard disk
 - configure packages (debconf database)
 - install packages
 - configure target system (run scripts)
- reboot from the local hard disk

- boot FAI live system (CD/USB or PXE) on the target machine
- mount FAI config space on the live system
- map hostname to set of classes
- install the target machine dependent on its classes:
 - partition local hard disk
 - configure packages (debconf database)
 - ▶ install packages
 - configure target system (run scripts)
- reboot from the local hard disk

- boot FAI live system (CD/USB or PXE) on the target machine
- mount FAI config space on the live system
- map hostname to set of classes
- install the target machine dependent on its classes:
 - partition local hard disk
 - configure packages (debconf database)
 - ▶ install packages
 - configure target system (run scripts)
- reboot from the local hard disk

- boot FAI live system (CD/USB or PXE) on the target machine
- mount FAI config space on the live system
- map hostname to set of classes
- install the target machine dependent on its classes:
 - partition local hard disk
 - configure packages (debconf database)
 - ▶ install packages
 - configure target system (run scripts)
- reboot from the local hard disk

FAI install

- boot FAI live system (CD/USB or PXE) on the target machine
- mount FAI config space on the live system
- map hostname to set of classes
- install the target machine dependent on its classes:
 - partition local hard disk
 - configure packages (debconf database)
 - install packages
 - configure target system (run scripts)
- reboot from the local hard disk

FAI softupdate (already installed machine)

- mount FAI config space on the system
- map hostname to set of classes
- dependent on the associated classes:
 - configure packages (debconf database)
 - install packages
 - configure target system (run scripts)

Overview

- Debian, the Universal Operating System
- 2 Goals, Challenges and Status of Debian-LAN
- 3 How is it done? The Debian-LAN Installation
 - Fully Automatic Installation (FAI)
 - Class Concept
 - Installation Procedure
 - Using FAI to Install the Debian-LAN System
- The Debian-LAN FAI Classes
- Summary and Conclusions

Using FAI to Install the Debian-LAN System

The debian-lan-config package provides the **complete FAI config** space² and instructions on how to deploy all machines of the system:

²http://sources.debian.net/src/debian-lan-config

Installing the Debian-LAN from its config space

To get started (cf. Debian-LAN Wiki³):

- Prepare/install the mainserver (and optionally the gateway):
 - Prepare or download a Debian-LAN net-install FAI CD and install the mainserver.
 - ► Alternatively, install a minimal Debian system and convert it to the Debian-LAN mainserver with FAI softupdate.
 - Deploy all other machines by PXE-booting in the network:

³https://wiki.debian.org/DebianLAN/bootstrap

Installing the Debian-LAN from its config space

To get started (cf. Debian-LAN Wiki³):

- Prepare/install the mainserver (and optionally the gateway):
 - Prepare or download a Debian-LAN net-install FAI CD and install the mainserver.
 - ► Alternatively, install a minimal Debian system and convert it to the Debian-LAN mainserver with FAI softupdate.
- Oeploy all other machines by PXE-booting in the network:

https://wiki.debian.org/DebianLAN/bootstrap

Using FAI to Install the Debian-LAN System

Machines known to the DHCP server will be installed unattended:

```
. . .
```

```
Fully Automatic Installation
                   FAI 4.0.6, 01 Feb 2013 (c) 1999-2012
               Thomas Lange (lange@informatik.uni-koeln.de)
-/srv/fai/nfsroot boot=live FAI FLAGS=verbose.sshd.createvt FAI CONFIG SRC=nfs:/
/faiserver/srv/fai/config FAI ACTION=install BOOT IMAGE=vmlinuz-3.2.0-4-amd64
Reading /tmp/fai/boot.log
FAI_FLAGS: verbose sshd createvt
Set $SERVER=faiserver. Value extracted from FAI CONFIG SRC
Can't connect to monserver on faiserver port 4711. Monitoring disabled.
FAI CONFIG SRC is set to nfs://faiserver/srv/fai/config
Configuration space faiserver:/srv/fai/config mounted to <u>/var/lib/fai/config</u>
Calling task setup
FAI FLAGS: verbose sshd createvt
30 Jul 15:25:22 ntpdate[667]: step time server 10.0.0.10 offset -0.464860 sec
Press ctrl-c to interrupt FAI and to get a shell
Starting FAI execution - 20130730\_152524
Calling task defclass
fai-class: Defining classes.
Executing /var/lib/fai/config/class/10-base-classes.
10-base-classes
Executing /var/lib/fai/config/class/20-hwdetect.source.
```

Overview

- 1 Debian, the Universal Operating System
- 2 Goals, Challenges and Status of Debian-LAN
- 3 How is it done? The Debian-LAN Installation
- 4 The Debian-LAN FAI Classes
- 5 Summary and Conclusions

The Debian-LAN FAI Classes

The <u>mainserver</u> maps onto the following classes⁴:

- ¶ FAIBASE
- OEBIAN
- S FAISERVER
- 4 LVM8_A
- 5 DISKLESS_SERVER
- FIREWALL
- O CUPS_SERVER

- 6 LOG_SERVER
- PROXY
- NTP_SERVER
- DNS_SERVER
- NFS_SERVER
- MAIL_SERVER
- LDAP_CLIENT

- LDAP_SERVER
- MERBEROS_CLIENT
- KERBEROS_KDC
- KDC_LDAP
- SERVER_A
- a GOSA

workstations map onto:

- FAIBASE
- OEBIAN
- O DHCPC
- 4 LVM5 A

- 6 CUPS_CLIENT
- LOG_CLIENT
- LDAP_CLIENT
- NFS_CLIENT

- MERBEROS_CLIENT
- CLIENT_A
- XORG
- DESKTOP

⁴Cf. class/50-host-classes in the Debian-LAN FAI config space.

The Debian-LAN FAI Classes

The <u>mainserver</u> maps onto the following classes⁴:

- ¶ FAIBASE
- 2 DEBIAN
- S FAISERVER
- 4 LVM8_A
- DISKLESS_SERVER
- FIREWALL
- O CUPS_SERVER

- 6 LOG_SERVER
- PROXY
- NTP_SERVER
- DNS_SERVER
- NFS_SERVER
- MAIL_SERVER
- LDAP_CLIENT

- LDAP_SERVER
- KERBEROS_CLIENT
- MERBEROS_KDC
- KDC_LDAP
- SERVER_A
- a GOSA

workstations map onto:

- FAIBASE
- ② DEBIAN
- OHCPC
- 4 LVM5_A

- O CUPS_CLIENT
- LOG_CLIENT
- LDAP_CLIENT
- NFS_CLIENT

- MERBEROS_CLIENT
- CLIENT_A
- XORG
- DESKTOP

⁴Cf. class/50-host-classes in the Debian-LAN FAI config space.

Philosophy of the Debian-LAN FAI Classes

The Debian-LAN config space has been set up with the following in mind:

- For every service and/or feature, use a separate class.
- Try to make every class as general as possible: Use SERVER_A and CLIENT_A for setup-specific stuff.
- Use extra classes for local and site-specific modifications, i.e. the classes: EDU, DEVEL, GERMAN, FR_BELGIAN, MYCLASS, ...

This leads to very nice development and maintenance features:

- If a service and/or a feature fails, it is clear where to look in the config space⁵.
- Reusable classes lead to a modular system: New setups may be composed of available modules.
- Users can provide extra classes to implement special features

Philosophy of the Debian-LAN FAI Classes

The Debian-LAN config space has been set up with the following in mind:

- For every service and/or feature, use a separate class.
- Try to make every class as general as possible: Use SERVER_A and CLIENT_A for setup-specific stuff.
- Use extra classes for local and site-specific modifications, i.e. the classes: EDU, DEVEL, GERMAN, FR_BELGIAN, MYCLASS, ...

This leads to very nice development and maintenance features:

- If a service and/or a feature fails, it is clear where to look in the config space⁵.
- Reusable classes lead to a modular system: New setups may be composed of available modules.
- Users can provide extra classes to implement special features.

⁵In addition, the FAI built-in log- and debug-features help a great deal. 📑 🗸 💂 🔌 🤉

Classes Reuse Example

Example: You prefer to have a gateway including the proxy.

- Move the association of the PROXY-class to the gateway.
- ② Check the classes SERVER_A and GATEWAY_A for necessary adaptions.

Example: You would like to split services onto two servers.

- Add a new hostname for the second server to the config space.
- Move all associations to classes you want to serve on that machine to the host.
- Implement the setup-specific classes SERVER_B and CLIENT_B.

Classes Reuse Example

Example: You prefer to have a gateway including the proxy.

_

- Move the association of the PROXY-class to the gateway.
- ② Check the classes SERVER_A and GATEWAY_A for necessary adaptions.

Example: You would like to split services onto two servers.

 \Longrightarrow

- Add a new hostname for the second server to the config space.
- Move all associations to classes you want to serve on that machine to the host.
- Implement the setup-specific classes SERVER_B and CLIENT_B.

Resources

Debian-LAN Wiki: https://wiki.debian.org/DebianLAN

 Debian-LAN package debian-lan-config: http://packages.debian.org/debian-lan-config

• Debian-LAN Git-Repository:

http://anonscm.debian.org/gitweb/?p=collab-maint/debian-lan.git

Debian-LAN mailing list:

http://lists.alioth.debian.org/mailman/listinfo/debian-lan-devel/

Illustrations remixed from: https://openclipart.org/

- Debian-LAN provides a way to install a complete Debian based network out of the box including kerberized services, central user management, diskless clients and roaming machines.
- The whole system is defined in the structured FAI configuration space. FAI is used to install the machines.
- FAI's class concept provides a transparent, very flexible and clean way to define and configure the system.
- You are invited to use Debian-LAN and provide additional classes to make it work the way you want (if it does not already).

- Debian-LAN provides a way to install a complete Debian based network out of the box including kerberized services, central user management, diskless clients and roaming machines.
- The whole system is defined in the structured FAI configuration space. FAI is used to install the machines.
- FAI's class concept provides a transparent, very flexible and clean way to define and configure the system.
- You are invited to use Debian-LAN and provide additional classes to make it work the way you want (if it does not already).

- Debian-LAN provides a way to install a complete Debian based network out of the box including kerberized services, central user management, diskless clients and roaming machines.
- The whole system is defined in the structured FAI configuration space. FAI is used to install the machines.
- FAI's class concept provides a transparent, very flexible and clean way to define and configure the system.
- You are invited to use Debian-LAN and provide additional classes to make it work the way you want (if it does not already).

- Debian-LAN provides a way to install a complete Debian based network out of the box including kerberized services, central user management, diskless clients and roaming machines.
- The whole system is defined in the structured FAI configuration space. FAI is used to install the machines.
- FAI's class concept provides a transparent, very flexible and clean way to define and configure the system.
- You are invited to use Debian-LAN and provide additional classes to make it work the way you want (if it does not already).

- Debian-LAN provides a way to install a complete Debian based network out of the box including kerberized services, central user management, diskless clients and roaming machines.
- The whole system is defined in the structured FAI configuration space. FAI is used to install the machines.
- FAI's class concept provides a transparent, very flexible and clean way to define and configure the system.
- You are invited to use Debian-LAN and provide additional classes to make it work the way you want (if it does not already).

If you plan to install a local area network – give Debian-LAN a try!

Thank you very much!

- Debian-LAN provides a way to install a complete Debian based network out of the box including kerberized services, central user management, diskless clients and roaming machines.
- The whole system is defined in the structured FAI configuration space. FAI is used to install the machines.
- FAI's class concept provides a transparent, very flexible and clean way to define and configure the system.
- You are invited to use Debian-LAN and provide additional classes to make it work the way you want (if it does not already).

If you plan to install a local area network – give Debian-LAN a try!

Thank you very much!