
Packages Not Using The Default Build Flags:
A Taxonomy

Emanuele Rocca
Arm

emanuele.rocca@arm.com

Abstract—While enabling the arm64 security feature known as
PAC/BTI in Debian, we found that a sizable number of packages
in the archive do not use the default build flags chosen by the dis-
tribution. The set of default flags is carefully selected by Debian
to strike a balance between performance optimization, security,
and ease of debugging. Packages setting their own flags may
be affected by various issues in terms of performance, security,
build reproducibility, and more. Additionally, the infrastructure
available in Debian to set default build flags allows one to perform
distribution-wide experiments, such as for example testing the
impact of a new optimization flag. In this paper, we describe the
issue of packages not using the default build flags, and categorize
these deviations by their underlying causes.

Index Terms—Build Flags, Linux Distributions, Debian, GCC

I. INTRODUCTION

Computer programs written in compiled languages such
as C, C++, and Fortran need to be compiled and linked to
produce an executable file that the machine can run. The
behavior of compilers and linkers can be controlled using
command-line arguments known as “build flags”, or “compiler
flags”. Several broad categories of build flags can be identified,
including: performance optimization, security, adherence to
standards, error handling, and more. Software developers use a
set of build flags suitable for debugging purposes while writing
and testing their code, and a different set of flags aimed at
distributing the project once they are satisfied with the quality
of their work and want to produce a release.

On Unix-like systems, it is common practice to use certain
well-defined environment variables to specify the desired build
flags depending on the programming language. For example,
CFLAGS is the variable used to pass build flags to programs
written in the C programming language, and CXXFLAGS
is the variable to set for C++. The GNU Make manual
describes the conventions for writing Makefiles for GNU
programs, including the list of environment variables used to
pass build flags, specify which compiler to use, and more [1].
Tools like GNU Automake, CMake, and Meson support such
conventions. Linux distributions choose a set of build flags
deemed appropriate for all packages they ship, and pass them
to the build system via the environment variables described
above.

We found a significant number of packages in Debian
that do not follow the convention of using well-defined en-
vironment variables to select which build flags to use. Not
using the build flags chosen by the distribution may have

negative implications in terms of security, performance, and
build reproducibility. This paper provides an analysis of the
most common reasons packages do not use default build flags.

II. METHODOLOGY

A. Problem Statement

General purpose Linux distributions such as Debian, Fedora,
or openSUSE provide a set of pre-built binary packages that
users can install on their systems. Other distributions such as
Gentoo are source based, meaning that the developers provide
source packages for users to build and install. In both cases,
distribution developers decide on a set of default build flags
to use when building packages.

On Debian systems, the program dpkg-buildflags is
used to retrieve the default compilation and linking flags. The
concept of building packages with hardened security flags
was first introduced while working on the Lenny release [2].
During the Wheezy release cycle, dpkg-buildflags was
extended to return hardening build flags by default [3]. Table
I shows the full list of environment variables set by dpkg
1.22.20, released in June 2025.

Environment Variable Sets options for
CFLAGS C compiler
CPPFLAGS C preprocessor
CXXFLAGS C++ compiler
DFLAGS D compiler
FFLAGS Fortran 77 compiler
FCFLAGS Fortran 9x compiler
OBJCFLAGS Objective C compiler
OBCXXFLAGS Objective C++ compiler
ASFLAGS Options for the assembler
LDFLAGS Options for the compiler when linking

TABLE I
BUILD FLAGS SET BY DEBIAN

The default flags can be overridden in several ways. For
example, users can tweak the system-wide configuration file
/etc/dpkg/buildflags.conf to set their own flags.
This allows one to simply perform distribution-wide experi-
ments, such as rebuilding all packages with custom flags.

We will now take a look at some of the options defined for
programs written in the C programming language to illustrate
the importance of honoring the default flags in terms of ease
of debugging, performance optimization, build reproducibility,
security, and code quality.

The default set of CFLAGS includes -g to add debugging
information to the compiled binaries; this information is then
typically included in a separate debug package with suffix
-dbgsym and removed from the ELF files shipped by the
main binary [4]. The performance optimization level chosen
by default for all packages is -O2, generally believed to be
a good compromise between performance, stability, and code
size. The -ffile-prefix-map argument ensures that the
build path is excluded from all generated files, which is an
important step for making the build reproducible [5]. Using
a reproducible build path also makes it possible to imple-
ment source code indexing for the purposes of automatically
downloading debugging symbols from debuginfod servers [6].
The flags -Wformat -Werror=format-security are
security-related settings included to ensure that all warn-
ings about incorrect format strings such as those used by
printf and scanf are considered build errors. To further
reduce attack surface, -fstack-protector-strong and
-fstack-clash-protection are used to mitigate stack
smashing and stack clash exploits, respectively.

The set of flags is architecture-dependent; some build op-
tions are only available on certain architectures and not on
others. The default flags on arm64 include two architecture-
specific security features called PAC/BTI aimed at pro-
tecting Control-flow integrity [7], enabled with the flag
-mbranch-protection=standard. Binaries built with
PAC/BTI include a special ELF note indicating that the
features are enabled. We perform daily checks on the Debian
archive to track the progress of PAC/BTI enablement. Our
analysis of the data revealed that, despite the inclusion of
-mbranch-protection=standard in the set of default
flags, a significant number of Debian packages are not built
with the expected features enabled. The observation served as
the primary motivation for this paper.

B. Proposed Approach

Given the key insight that binaries built with
-mbranch-protection=standard include a special
ELF note, we can analyze all ELF files in the Debian archive
by checking their notes section for PAC/BTI enablement. As
shown in Figure 1, only 50% of the 71000 binary packages
in the archive are architecture-dependent. Moreover, not
all architecture-dependent packages ship ELF files: out of
36000, about 12000 do not. Our analysis can thus focus on
approximately 24000 packages in the Debian archive, a third
of the total.

The methodology we follow to analyze the Debian archive
for PAC/BTI enablement is:

1) Download all architecture-dependent binary packages
from the Debian archive

2) For each package, check if it ships at least one ELF file
3) If it does, check if at least one ELF file has the note

advertising PAC/BTI support
4) If no ELF files have PAC/BTI, the package requires

further inspection

Fig. 1. Binary packages shipping ELF files

The majority of Debian packages shipping ELF files have
the features turned on. Some do not, and there are various
reasons to explain why that is the case. Some compilers
producing ELF files simply do not support the features at this
point. The Haskell, Go, OCaml, Rust, and Pascal compilers
fall into this category.

There are however about 600 source packages built by
compilers that do support PAC/BTI, and yet do not ship ELF
files with the features on.

Debian packages are built by a network of build servers
(buildd) [8], and build logs for each supported architecture
are publicly available. We can thus fetch the latest arm64
build logs for all the 600 packages under examination and
see if they contain -mbranch-protection=standard.
Considering that the flag is included among the default ones
set by Debian, all packages built without it likely ignore the
default settings and set their own, either accidentally or on
purpose.

III. RESULTS

By inspecting the source code of packages built without
the default build flags, we found the main causes to be the
following:

A. Hand-written Makefiles
B. Misconfigured build systems
C. Ancient debhelper usage
D. Flags hardcoded in debian/rules

Issues A and B originate in the upstream codebase and
therefore affect all downstream distributions that package the
software, not only Debian. Conversely, issues 3 and 4 are
specific to the Debian packaging and thus affect only Debian
and possibly its derivatives.

A. Hand-written Makefiles

Consider the following excerpt from a real hand-written
Makefile found in Debian:

1 CC = gcc
2 CFLAGS = -Wall -Wstrict-prototypes -O2
3

4 .c.o:
5 $(CC) $(CFLAGS) -c $<

Although on line 5 the Makefile does use the CC and
CFLAGS variables, they are set unconditionally on line 1 and
2 respectively, overriding the values set in the environment (if
any). A better approach consists in using make’s Conditional
Variable Assignment operator (?=) to define the variables only
if they are not already set. The Append operator (+=) can also
be used where appropriate. [1]

In the case of relatively simple software, there is a tendency
to manually create a correspondingly simple Makefile. Most
examples found online look similar to the snippet shown
above, reinforcing the idea that unconditionally overriding
build-related environment variables seems to be common
practice when writing Makefiles by hand.

Notably, the example shown here also overrides the choice
of compiler. Due to the widespread use of this approach,
the project attempting a Debian-wide rebuild using Clang
renames the Clang executables to match the names of their
GCC counterparts, rather than relying on the CC and CXX
environment variables [9].

B. Misconfigured build system

Most popular build systems, such as GNU Autotools and
CMake, honor the various build-related environment variables
by default. However, our analysis found some recurring mis-
configurations. Taking CMake as the first example, let us
consider the following, minimal CMakeLists.txt:

1 project(SimpleExample C)
2 add_executable(main main.c)

Using this example and passing the CFLAGS variable to
CMake, we can confirm that indeed the chosen value gets
used by the compiler when running make VERBOSE=1.

CMake uses the CFLAGS environment variable value in
combination with its own builtin default flags for the toolchain
to initialize and store the CMAKE_C_FLAGS cache entry. We
have found various programs setting their own build flags as
follows:

1 set(CMAKE_C_FLAGS "-Wall -O3 -pthread")

In this case the CMake configuration does not override the
CFLAGS environment variable directly, as previously shown in
section III-A, Hand-written Makefiles – the effect is however
exactly the same: the build flags set by the user (or by the
distribution) are ignored, and those specified by the upstream
developer are used instead. The solution to this issue is

analogous to the Makefile example, namely appending to the
variable instead of overriding it:

1 set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall
-O3 -pthread")

Similarly, we have found that some projects using the
GNU Autotools manually set the value of CFLAGS in
configure.ac, overriding any previous value the variable
may have had. In this case, once again, it is better to append
the desired defaults to the variable instead.

We have not found any misconfigurations in packages using
the Meson Build system, which is likely attributable to its
provision of explicit mechanisms for specifying default build
flags, such as add_project_arguments.

C. Ancient debhelper usage

The vast majority of software in Debian is packaged us-
ing debhelper, a suite of tools automating various com-
mon aspects of building packages. Since the introduction
of the debhelper command sequencer dh(1) in 2008, many
debian/rules files have become extremely simple, in
some cases just a couple of lines.

One of the features of the sequencer is automatically
setting all environment variables related to build flags listed
in table I, unless they are already set. A few packages
in Debian do not adopt the dh short style format, using
debhelper the old-fashioned way instead. By following such
approach, the variables containing the default build flags set by
dpkg-buildflags are not automatically set. Maintainers
can either call dpkg-buildflags directly, or use the
following snippet:

1 DPKG_EXPORT_BUILDFLAGS = 1
2 include /usr/share/dpkg/buildflags.mk

Furthermore, debhelper adopts the concept of Compatibility
Levels in order to ensure that major backwards-incompatible
changes do not break existing packages. Automatic setting of
build flags was introduced in 2012 when debhelper bumped its
compatibility level to 9. All packages declaring a compatibility
level less than 9 also need to manually set the build flags as
described for those not using the dh short style format. Debian
Trends offers historical insights into the adoption of debhelper
compatibility levels. [10]

D. Flags hardcoded in debian/rules

In certain cases, the upstream build system is configured
correctly, but the way the Debian packaging tools are used
leads to build flags that differ from Debian’s default values.
One such rather obvious example is when the maintainer
explicitly sets the build flags manually in debian/rules.
We have found several such cases in our analysis.

Another, more subtle circumstance occurs when the main-
tainer tries to append to a variable, for example CFLAGS, but
does so before the automatic setting of the variable by dh takes

place. Consider the following, simplified snippet inspired by
a real case:

1 #!/usr/bin/make -f
2

3 export CFLAGS += -pipe -fPIC -Wall
4

5 %:
6 dh $@

The intention of the maintainer is clear: they want to append
some values to the default build flags, not override them. How-
ever, the variable is not set yet on line 3, debhelper only sets it
later on. Crucially, it does so only if it is not already set. Given
that the snippet sets it, the end result is that the package is
built with -pipe -fPIC -Wall, and not the default flags.
Precisely for this use case, dpkg-buildflags provides the
DEB_CFLAGS_MAINT_APPEND variable, which should be
used instead.

IV. RELATED WORK

To the best of our knowledge, this is the first work to analyze
the outcome of a complete distribution rebuild to investigate
packages that deviate from the default build flags.

Previous work has instead focused on detecting the compiler
optimization levels used when building a binary [11] [12],
exploring optimal compiler flags for performance [13] [14],
energy efficiency [15], and fault tolerance [16].

Various authors have focused on mass rebuilding several
packages in a distribution, either to search for potential secu-
rity flaws [17], to parallelize the work [18], or to evaluate the
efficiency of the process itself [19].

There is an open proposal by the Fedora community to add
markers to ELF objects with the goal of determining whether
they have certain properties, including some of the build flags
they have been built with. [20] Such markers would be a great
help when trying to single out binaries built without the default
flags.

V. CONCLUSION

This work started from the observation that a non-negligible
number of packages in Debian is built without the default
build flags set by the distribution. We used the knowledge
that a special ELF note is added to binaries built with one
of the default flags set by Debian on arm64. Checking for the
absence of this note allowed us to reduce the scope of analysis
from several thousand source packages producing ELF files to
a few hundreds.

We then inspected the source code of packages built without
the default build flags and found four main causes, two
related to the upstream code (Hand-written Makefiles and
misconfigured build systems) and two found in the De-
bian packaging (ancient debhelper usage, flags hardcoded in
debian/rules).

We hope that this paper provides useful information to help
software authors and package maintainers improve the quality
of Debian packages.

REFERENCES

[1] R. M. Stallman, R. McGrath, and P. Smith, “Gnu make,” Free Software
Foundation, Boston, 1988.

[2] M. Muehlenhoff, “Introducing security hardening features
for lenny,” 2008, accessed: 2025-06-16. [Online]. Available:
https://lists.debian.org/debian-devel-announce/2008/01/msg00006.html

[3] R. Hertzog, “Bits from dpkg developers - dpkg 1.16.1,” 2011, accessed:
2025-06-16. [Online]. Available: https://lists.debian.org/debian-devel-
announce/2011/09/msg00001.html

[4] “Automatic debug packages,” 2025, accessed: 2025-06-06. [Online].
Available: https://wiki.debian.org/AutomaticDebugPackages

[5] C. Lamb and S. Zacchiroli, “Reproducible builds: Increasing the in-
tegrity of software supply chains,” IEEE Software, vol. 39, no. 2, pp.
62–70, 2021.

[6] R. Stallman, R. Pesch, S. Shebs et al., “Debugging with gdb,” Free
Software Foundation, vol. 675, 1988.

[7] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Transac-
tions on Information and System Security (TISSEC), vol. 13, no. 1, pp.
1–40, 2009.

[8] M. Caneill and S. Zacchiroli, “Debsources: Live and historical views on
macro-level software evolution,” in Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, 2014, pp. 1–10.

[9] S. Ledru, “Rebuild of the debian archive with clang,” 2025, accessed:
2025-06-12. [Online]. Available: https://clang.debian.net/

[10] L. Nussbaum, “Trends: Debhelper compatibility level,” 2025, accessed:
2025-06-18. [Online]. Available: https://trends.debian.net/#debhelper-
compatibility-level

[11] Y. Chen, Z. Shi, H. Li, W. Zhao, Y. Liu, and Y. Qiao, “Himalia: Recov-
ering compiler optimization levels from binaries by deep learning,” in
Intelligent Systems and Applications: Proceedings of the 2018 Intelligent
Systems Conference (IntelliSys) Volume 1. Springer, 2019, pp. 35–47.

[12] D. Pizzolotto and K. Inoue, “Identifying compiler and optimization level
in binary code from multiple architectures,” IEEE Access, vol. 9, pp.
163 461–163 475, 2021.

[13] D. Plotnikov, D. Melnik, M. Vardanyan, R. Buchatskiy, R. Zhuykov, and
J.-H. Lee, “Automatic tuning of compiler optimizations and analysis of
their impact,” Procedia Computer Science, vol. 18, pp. 1312–1321, 2013.

[14] K. Hoste and L. Eeckhout, “Cole: compiler optimization level ex-
ploration,” in Proceedings of the 6th annual IEEE/ACM international
symposium on Code generation and optimization, 2008, pp. 165–174.

[15] J. Pallister, S. J. Hollis, and J. Bennett, “Identifying compiler options to
minimize energy consumption for embedded platforms,” The Computer
Journal, vol. 58, no. 1, pp. 95–109, 2015.

[16] R. Thunig, M. Johannfunke, T. Wang, and H. Schirmeier, “One flag to
rule them all? on the quest for compiler optimizations to improve fault
tolerance,” in 2024 19th European Dependable Computing Conference
(EDCC). IEEE, 2024, pp. 33–40.

[17] J. Ruohonen, M. Saddiqa, and K. Sierszecki, “A static analysis of
popular c packages in linux,” arXiv preprint arXiv:2409.18530, 2024.

[18] L. Nussbaum, “Rebuilding debian using distributed computing,” in
Proceedings of the 7th international workshop on Challenges of large
applications in distributed environments, 2009, pp. 11–16.

[19] S. R. Tate and B. Yuan, “On the efficiency of building large collections
of software: Modeling, algorithms, and experimental results,” in Inter-
national Conference on Software Technologies. Springer, 2022, pp.
145–168.

[20] “Fedora toolchain watermarks,” 2025, accessed: 2025-06-13. [Online].
Available: https://fedoraproject.org/wiki/Toolchain/Watermark

