

(lj

ATal

SYSTEM V
APPLICATION BINARY INTERFACE

Motorola 68000 Processor Family
Supplement

UNIX Software Operation

Copyright 1990 AT&T
All Rights Reserved
Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means—graphic,
electronic, electrical, mechanical, or chemical, including photoco

‘ pying, recording in any medium, tap-
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state-
ments of any kind in this document, its updates, supplements, or special editions, whether such er-
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu-

ment. AT&T disclaims all warranties regarding the information conta

ined herein, whether expressed,
implied or statutory,

including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein

will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS
UNIX is a registered trademark of AT&T.

The publisher offers discounts on this book when ordered in bulk quantities.
For more information, write:

Special Sales
Prentice-Hall, Inc.

College Technical and Reference Division ’ll FOHNISCH l"
Englewood Clitfs, New Jersey 07632 ook U S

= T N =

or = ;’—"‘ v .i 2D

call 201-592-2498 1:_ \‘,.., ' _:—

For single copies, call 201-767-5937 ‘f_- Wi =
*‘1 NIV KALTAT

10987654321 {umvaraiis soibIC 7

g

ISBN 0-13-877kk3-k

UNIX
PRESS

A Prentice Hall Title

Contents

' '1 ~ INTRODUCTION
Motorola 68000 Family and the System V ABI 1-1
How to Use the Motorola 68000 Family ABI Supplement 1-2

2 SOFTWARE INSTALLATION
Software Distribution Formats 2-1

3 LOW-LEVEL SYSTEM INFORMATION

Machine Interface 3-1

Function Calling Sequence 3-10
Operating System Interface 3-19
Coding Examples 3-31

4 OBJECT FILES

ELF Header 41
Sections 4-2
Symbol Table 4-3
Relocation 4-4

5 ~ PROGRAM LOADING AND DYNAMIC LINKING
Program Loading 5-1
Dynamic Linking 5-5

Table of Contents i

Table of Contents

6 LIBRARIES
System Library 6-1
C Library 6-3
System Data Interfaces 6-4

i Motorola 68000 Family ABI SUPPLEMENT

Figures and Tables

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:

Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 3-13:
Figure 3-14:
Figure 3-15:
Figure 3-16:
Figure 3-17:
Figure 3-18:
Figure 3-19:
Figure 3-20:
Figure 3-21:
Figure 3-22:
Figure 3-23:
Figure 3-24:
Figure 3-25:
Figure 3-26:
Figure 3-27:
Figure 3-28:
Figure 3-29:
Figure 3-30:
Figure 3-31:
Figure 3-32:
Figure 3-33:
Figure 3-34:
Figure 3-35:
Figure 3-36:
Figure 3-37:

Scalar Types

Structure Smaller Than a Long Word

No Padding

Internal Padding

Internal and Tail Padding

union Allocation

Bit-Field Ranges

Bit Numbering

Left-to-Right Allocation
Boundary Alignment
Storage Unit Sharing
union Allocation
Unnamed Bit-Fields
Processor Registers
Standard Stack Frame
Function Prologue
Integral and Pointer Arguments
Floating-Point Arguments
Structure and Union Arguments
Function Epilogue
Function Epilogue
Virtual Address Configuration
Exceptions and Signals
Declaration for main
Condition Code Register Fields
Initial Process Stack

Auxiliary Vector
Auxiliary Vector Types, a type
Example Process Stack
Position-Independent Function Prologue
Absolute Load and Store
Position-Independent Load and Store
Absolute Direct Function Call
Position-Independent Direct Function Call
Absolute Indirect Function Call
Position-Independent Indirect Function Call
Branch Instruction, Both Models

Table of Contents

3-2
3-3
3-4
3-4
3-5
3-5
3-6
3-7
3-7
3-7
3-8
3-8
3-8
3-11
3-12
3-13
3-15
3-15
3-16
3-16
3-17
3-20
3-23
3-24
3-25
3-26
3-27
3-27
3-30
3-33
3-34
3-35
3-35
3-36
3-36
3-37
3-37

Table of Contents

Figure 3-38: Absolute switch Code 3.38
Figure 3-39: Position-Independent swit i Code 3.39
Figure 3-40: C Stack Frame 3.40
Figure 4-1: Motorola 68000 Family Identification, e ident 4-1
Figure 4-2: Special Sections 4.2
Figure 4-3: Relocatable Fields 4-4
Figure 4-4: Relocation Types 4.7
Figure 5-1: Executable File 5.1
Figure 5-2: Program Header Segments 5.2
Figure 5-3: Process Image Segments 53
Figure 5-4: Example Shared Object Segment Addresses 5-4
Figure 5-5: Initial Procedure Linkage Table 5.7
Figure 6-1: libsys Support Routines 6-1
Figure 6-2: libsys, Global External Data Symbols 6-2
Figure 6-3: <assert.n> 6-4
Figure 6-4: <ctype.n> 6-5
Figure 6-5: <dirent.h> 6-6
Figure 6-6: <crrno.h>, Part 1 of 4 6-7
Figure 6-7: <errno.h>, Part 2 of 4 6-8
Figure 6-8: <crrno.nh>, Part 3 of 4 6-9
Figure 6-9: <errno.n>, Part 4 of 4 6-10
Figure 6-10: <fcntl.n>, Part 1 of 2 6-11
Figure 6-11: <fcnt1.h>, Part 2 of 2 6-12
Figure 6-12: <ficat .n- 6-12
Figure 6-13: <fmtmsg.h> 6-13
Figure 6-14: <ty 1> 6-14
Figure 6-15: <grp.h> 6-14
Figure 6-16: <sys/ipc.h> 6-15
Figure 6-17: <langinfo.h>, Part1 of 2 6-16
Figure 6-18: <langinfo.h-, Part2 of 2 6-17
Figure 6-19: <linits.h> 6-18
Figure 6-20: <locale.h> 6-19
Figure 6-21: <math.h- 6-20
Figure 6-22: <sys/mman.h> 6-20
Figure 6-23: <mon .1 6-21
Figure 6-24: <sys/mount .ho> 6-21
Figure 6-25: - sys/msg.h> 6-22
Figure 6-26: <rctconfig.nh-, Part 1 of 2 6-23
Figure 6-27: <netconfiqg.n>, Part 2 of 2 6-24
Figure 6-28: <netdir . h- 6-25
Figure 6-29: <111 types b 6-26
iv

Motorola 68000 Family ABI SUPPLEMENT

Figure 6-30: <sys/param.h>

Figure 6-31: <poll

s

Figure 6-32: <sys/procset .h>
g)%

Figure 6-33: <pwd.

h>

Figure 6-34: <sys/regset .h>
Figure 6-35: <sys/resource.h>

Figure 6-36: <rpc.
Figure 6-37: <rpc.
Figure 6-38: <rpc.
Figure 6-39: <rpc.
Figure 6-40: <rpc.
Figure 6-41: <rpc.
Figure 6-42: <rpc.
Figure 6-43: <rpc
Figure 6-44: <rpc.
Figure 6-45: <rpc.
Figure 6-46: <rpc.
Figure 6-47: <rpc.
Figure 6-48: <scar

h>, Part 1 of 12
h>, Part 2 of 12
h>, Part 3 of 12
h>, Part 4 of 12
h>, Part 5 of 12
h>, Part 6 of 12
h>, Part 7 of 12

.h>, Part 8 of 12

h>, Part 9 of 12

h>, Part 10 of 12
h>, Part 11 of 12
h>, Part 12 of 12

ch.h>

Figure 6-49: <sys/sem.h>
Figure 6-50: <set jmp.h>
Figure 6-51: <sys/shm.h>
Figure 6-52: <sigaction.h>

Figure 6-53: <sys/siginfo.h>, Part 1 of 3
Figure 6-54: <sys/siginfo.h>, Part2 of 3
Figure 6-55: <sys/siginfo.h>, Part 3 of 3

Figure 6-56: <signal.h>, Part 1 of 2
Figure 6-57: <signal.h>, Part 2 of 2
Figure 6-58: <sys/stat . h>, Part 1 of 2
Figure 6-59: <sys/stat .h>, Part 2 of 2
Figure 6-60: <sys/statvis.h>

Figure 6-61: <stddef .h>

Figure 6-62: <stdio.h>

Figure 6-63: <stdlib.h>

Figure 6-64: <stropts.
Figure 6-65: <st ropts.
Figure 6-66: <stropts.
Figure 6-67: <stropts.
Figure 6-68: <tcrmios.
Figure 6-69: <tcrmios.
Figure 6-70: <termios.

Table of Contents

h>, Part 1 of 4
h>, Part 2 of 4
h>, Part 3 of 4
h>, Part 4 of 4
h>, Part 1 of 6
h>, Part 2 of 6
h>, Part 3 of 6

Table of Contents

6-26
6-27
6-28
6-29
6-30
6-31

6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41

6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-50
6-51

6-52
6-53
6-54
6-55
6-56
6-56
6-57
6-58
6-59
6-60
6-61

6-62
6-63
6-64
6-65

Table of Contents

Figure 6-71:
Figure 6-72:
Figure 6-73:
Figure 6-74: <5

Figure 6-75: <sy
Figure 6-76: <sy:
Figure 6-77: <sy:
Figure 6-78: <sy:
Figure 6-79: <sy:
Figure 6-80: <sy:
Figure 6-81: <sy:
Figure 6-82: <sy:
Figure 6-83: <sy:
Figure 6-84: <y:
Figure 6-85: <sy:
Figure 6-86: - sy:

Figure 6-87:
Figure 6-88:
Figure 6-89:
Figure 6-90:
Figure 6-91:
Figure 6-92:
Figure 6-93:
Figure 6-94:
Figure 6-95:
Figure 6-96:

Vi

<termios.
<termios.

<termios.

~<

<SYS

<uio.h>

!
t

>, Part 4 of 6
1>, Part 5 of 6

h>, Part 6 of 6

s/time.h>, Part 1 of 2
s/time.h>, Part 2 of 2
s/t imes.h>
;/tiuser.h>, Service Types
;/Uiuser h>, Transport Interface States
;/tUiuser . h>, User-level Events
i/t iuser . h>, Error Return Values
i/Uiuser . h> Transport Interface Data Structures, 1 of 2
i/Uiuser he, Transport Interface Data Structures, 2 of 2
i/t iuser.h>, Structure Types
;/tiuser.h>, Fields of Structures
;/t iuser.h>, Events Bitmasks
s/tiuser.h>, Flags
/types.h>
<ucontext .h>
<ulimit.h>
>, Part 1 of 3

<unistd.h

<unistd.h>, Part 2 of 3
<unistd.h>, Part 3 of 3

<ut ime.h>

<utsname.h>

<wait.h>

6-66
6-67
6-68
6-69
6-70
6-70
6-71
6-71
6-72
6-73
6-74
6-75
6-75
6-76
6-76
6-77
6-77
6-78
6-78
6-79
6-79
6-80
6-81
6-81
6-82
6-83

Motorola 68000 Family ABI SUPPLEMENT

1. INTRODUCTION

NOILONAOHLNI °}

1 INTRODUCTION

Motorola 68000 Family and the System V
ABI 141

How to Use the Motorola 68000 Family ABI

Supplement 12
Evolution of the ABI Specification 1-2

Table of Contents

Motorola 68000 Family and the System V ABI

The System V Application Binary Interface, or ABI, defines a system interface
for compiled application programs. Its purpose is to establish a standard binary
interface for application programs on systems that implement UNIX System V
Release 4.0 or some other operating system that complies with the System V
Interface Definition, Issue 3.

This document is a supplement to the generic System V ABI, and it contains
information specific to System V implementations built on the Motorola 68000
processor architecture family. The generic term ““Motorola 68000 family” is used
in this specification to mean the Motorola MC68020, MC68030, and MC68040 pro-
cessor architectures; it does not refer to the MC68000, MC68008, or MC68010.

Together, these two specifications, the generic System V ABI and the Motorola
68000 Family System V ABI Supplement, constitute a complete System V Appli-
cation Binary Interface specification for systems that implement the architecture of
the Motorola 68000 family.

INTRODUCTION 11

How to Use the Motorola 68000 Family ABI
Supplement

This document is a supplement to the generic System V ABI and contains infor-
mation referenced in the generic specification that may differ when System V is
implemented on different processors. Therefore, the generic ABI is the prime

reference document, and this supplement is provided to fill gaps in that
specification.

As with the System V ABI, this specification refer

ences other publicly-available
reference documents, including the

B MC68020 32-Bit Microprocessor User’s Manual, MC68020UM /AD

B MC68030 Enhanced 32-Bit Microprocessor User’s Manual, MC68030UM/AD
B MC68040 32-Bit Microprocessor User’s Manual, MC68040UM /AD

B M68000 Programmer’s Reference Manual, M68000PM / AD

available from Motorola.

All the information referenced by this suppleme
this specification, and just as binding as the
included here.

nt should be considered part of
requirements and data explicitly

Evolution of the ABI Specification

The System V Application Binary Interface will evolve over time to address
new technology and market requirements, and will be reissued at intervals of
approximately three years. Each new edition of the specification is likely to con-
tain extensions and additions that will increase the potential capabilities of appli-
cations that are written to conform to the ABI.

As with the System V Interface Definition, the ABI will implement Level 1 and
Level 2 support for its constituent parts. Level 1 support indicates that a portion
of the specification will continue to be supported indefinitely, while Level 2 sup-
port means that a portion of the specification may be withdrawn or altered after
the next edition of the ABI is made available. That is, a portion of the
specification moved to Level 2 support in an edition of the ABI specification will

remain in effect at least until the following edition of the specification is
published.

1-2 Motorola 68000 Family ABI SUPPLEMENT

~ How to Use the Motorola 68000 Family ABI Supplement

These Level 1 and Level 2 classifications and qualifications apply to this Supple-
ment, as well as to the generic specification. All components of the ABI and of
this supplement have Level 1 support unless they are explicitly labeled as Level 2.

INTRODUCTION 1-3

2. SOFTWARE INSTALLATION

NOLLVTIVLSNI 3HVML40S ¢

e el el B8

2 SOFTWARE INSTALLATION

Software Distribution Formats
Physical Distribution Media

Table of Contents

2-1
2-1

Software Distribution Formats

Physical Distribution Media

Approved media for physical distribution of ABI-conforming software are listed
below. Inclusion of a particular medium on this list does not require an ABI-
conforming system to accept that medium. For example, a conforming system
may install all software through its network connection and accept none of the
listed media.

B 5.25-inch floppy disk: 96 TPI (80 tracks/side) doubled-sided, 15
sectors/track, 512 bytes/sector, total format capacity of 1.2 megabytes per
disk.

B 3.5-inch floppy disk: 135 TPI (80 tracks/side) double sided, 18 sectors/track,
512 bytes/sector, total format capacity of 1.44 megabytes per disk.

B 1/2-inch reel-to-reel tape: conforms to ANSI-standard reel-to-reel tape stan-
dard which consists of 9 tracks, 1600 BPI, no label.

B 60 MB quarter-inch cartridge tape in QIC-24 format.

The QIC-24 cartridge tape data format is described in Proposed Standard for Data
Interchange on the Streaming 1/4 Inch Magnetic Tape Cartridge Using Group Code
Recording at 10000 FRPI, Revision D, April 22, 1983. This document is available
from the Quarter-Inch Committee (QIC) through Freeman Associates, 311 East
Carillo St., Santa Barbara, CA 93101.

SOFTWARE INSTALLATION 2-1

NOILLVIWHOZNI WILSAS 13AIT MO °E

3 LOW-LEVEL SYSTEM
INFORMATION

Machine Interface 3-1
Processor Architecture 3-1
Data Representation 3-1
W Fundamental Types 3-1
B Aggregates and Unions 3-3
Function Calling Sequence 3-10
Registers and the Stack Frame 3-10
Integral and Pointer Arguments 3-14
Floating-Point Arguments 3-15
Structure and Union Arguments 3-16
Functions Returning Scalars or No Value 3-16
Functions Returning Structures or Unions 3-17
Operating System Interface 3-19
Virtual Address Space 3-19
W Page Size 3-19
W Virtual Address Assignments 3-19
B Managing the Process Stack 3-21
B Coding Guidelines 3-21
Processor Execution Modes 3-22
Exception Interface 3-23
Process Initialization 3-24
W Registers 3-24
M Process Stack 3-25

Table of Contents i

Table of Contents

—_— . .}

Coding Examples

3-31
Code Model Overview 3-32
Position-Independent Function Prologue 3-33
Data Objects 3-34
Function Calls 3-35
Branching 3-37
C Stack Frame 3-39
Variable Argument List 3-40
Allocating Stack Space Dynamically 3-41

Machine Interface

Processor Architecture

The MC68020 32-Bit Microprocessor User’s Manual, the MC68030 Enhanced 32-Bit
Microprocessor User’s Manual, and the MC68040 32-Bit Microprocessor User’s
Manual define the 68000 family processor architecture. The M68000 Programmer’s
Reference Manual defines the programming model. An MC68851 Paged Memory
Management Unit (PMMU) may be present with the MC68020. An MC68881 or
MC68882 Floating Point Coprocessor (FPCP) is assumed to be present with the
MC68020 or MC68030. Programs intended to execute directly on the processor
use the instruction set, instruction encodings, and instruction semantics of this
architecture. A program may use only the instructions defined for the MC68040.
Refer to the M68000 Programmer’s Reference Manual for information regarding
proper instruction usage for the MC68020, MC68030, and MC68040 processors.

To be ABI-conforming, the processor must implement the architecture’s instruc-
tions, perform the specified operations, and produce the specified results. The
ABI neither places performance constraints on systems nor specifies what instruc-
tions must be implemented in hardware. A software emulation of the architec-
ture could conform to the ABL.

Some processors might support the 68000 and MC68881 /2 FPCP architectures as
subsets, providing additional instructions or capabilities. Programs that use
those capabilities explicitly do not conform to the 68000 ABIL. Executing those
programs on machines without the additional capabilities gives undefined
behavior.

Data Representation
Fundamental Types

Figure 3-1 shows the correspondence between ANSI C’s scalar types and the
processor’s.

LOW-LEVEL SYSTEM INFORMATION 3-1

Machine Interface

Figure 3-1: Scalar Types

Alignment
Type C sizeof (bytes) 68000
signed char ; t
e 1 1 signed byte
unsigned char 1 1 unsigned byte
short ;

t
alined ahart 2 2 signed word (2 bytes)
unsigned short 2 2 unsigned word

Integral int
e signed long word
o 8 4| @bytes)
signed long y
enum
unsigned int 4 4 _ 1 —
unsigned long HRSIgHE &

. any-type *]

Pointer any-type () () 4 4 unsigned long word
float 4 ingle- ision

Floating- 4 single prec1s' :

point double 8 8 double-precision
long double 16 8 extended-precision

A null pointer (for all types) has the value zero.

If a double or long double appears on the stack, not as a part of an aggre-
NOTE | gate or union, then it is aligned to 4 bytes.

e Motorola 68000 Family ABI SUPPLEMENT

Machine Interface

Aggregates and Unions

An array assumes the alignment of its elements’ type. The size of any object,
including arrays, structures, and unions, always is a multiple of the object’s
alignment. Structure and union objects may, therefore, require padding to meet
size and alignment constraints.

B The alignment of a structure or a union is the maximum of the alignment of
its elements.

B Each member is assigned to the lowest available offset with the appropriate
alignment. This may require internal padding, depending on the previous
member.

B A structure’s size is increased, if necessary, to make it a multiple of the
structure’s alignment. This may require tail padding, depending on the last
member.

Aggregates or unions residing on the stack only require 4-byte alignment.
NOTE

]

In the following examples, members’ byte offsets appear in the upper left
corners.

Figure 3-2: Structure Smaller Than a Long Word

struct { Byte aligned, sizeof is 1
char (el 0

C

}:

LOW-LEVEL SYSTEM INFORMATION

Machine Interface

Figure 3-3: No Padding

struct { Long word aligned, sizeof is 8
. 0 1 2 —]
char c; (& d s
char i
short s; E n
long n;

ﬁ{;ure 3-4: Internal Padding

struct { Word aligned, sizeof is 4
. 0 1 2
char G - pa d s
short s;

}:

3-4 Motorola 68000 Family ABI SUPPLEMENT

Machine Interface

Figure 3-5: Internal and Tail Padding

struct {
char e}
double d;
short s;

}i

8-byte aligned (4-byte on stack), sizeof is 24
0 1

C

pad

pad

16

20

Figure 3-6: union Allocation

union { Long word aligned, sizeof is 4
. 0 1

char C; & pad

short s;

int Ji i s ’ pad
}i - ,

J
Bit-Fields

C struct and union definitions may have bit-fields, defining integral objects with

a specified number of bits.

LOW-LEVEL SYSTEM INFORMATION

3-5

Machine Interface

Figure 3-7: Bit-Field Ranges

Bit-field Type Width w Range
signed char B T e
char 1to8 0to2“-1
unsigned char 0to2“-1
signed short w1 o 2%-1_1
short 1to 16 0to2"-1
unsigned short 0to 21
signed int I
int 0 to 2-1
enum Rob 0to 2“1
unsigned int 0to 2“1
signed long = i 2]
long 1 to 32 0 to 2“-1
unsigned long 0 to 2¥-1

“Plain” bit-fields always have non-negative values. Although they may have
type char, short, int, or long (which can have negative values), these bit-fields
are extracted into a long word with zero fill. Bit-fields obey the same size and
alignment rules as other structure and union members, with the following addi-
tions.

B Bit-fields are allocated from left to right (most to least significant).

B A bit-field must entirely reside in a storage unit appropriate for its declared
type. Thus a bit-field never crosses its unit boundary.

B Bit-fields may share a storage unit with other st ruct /union members,
including members that are not bit-fields. Of course, st ruct members
occupy different parts of the storage unit.

B Unnamed bit-fields’ types do not affect the alignment of a structure or union,
although individual bit-fields member offsets obey the alignment constraints.

0 Motorola 68000 Family ABI SUPPLEMENT

Machine Interface

The following examples show st ruct and union members’ byte offsets in the
upper left corners; bit numbers appear in the lower corners.

Figure 3-8: Bit Numbering

0 1 2, 3
0x01020304 01 02 03 04
31 23 15 7 0
Figure'37-§: 7Le7fi-7t;)-l'1‘7irgh7t Allocation
struct { Long word aligned, sizeof is 4
LHE 32 5_; i j k m pad “
int k6] 26 20 13 0
int m:7;
}:
Figure 3-10: Esunaafi/ l-{lirgninilent =
struct { Long word aligned, sizeof is 12
- ag-Q- 0 3
éhort £: 9% s j pad ¢
int Iz 9t 31 2 13 7 0
4
char c; t pad u pad
short t:9; -:1 . 22 15 6 0
short wu:9; d pad J
char ds o =

LOW-LEVEL SYSTEM INFORMATION 3-7

Machine Interface

Figure 3-11: Storage Unit Sharing

struct {
char
short

union {
char
short

cy

C;
s:8;

Figure 3-12: union Allocation

Word aligned, sizeof is 2

0

c

1

Word aligned, sizeof is 2

pad

7

pad

7 0

Figure 3-13: Unnaméd—é?t;Fields

struct |
char
int
char
short
char
char

3-8

Byte aligned, sizeof is 9

31

o +0
31 23
4 5 6
d pad :9 pad
31 23 15 6 0
8
e

Motorola 68000 Family ABI SUPPLEMENT

. Machine Interface

As the examples show, int bit-fields (including signed and unsigned) pack
more densely than smaller base types. One can use char and short bit-fields to
force particular alignments, but int generally works better.

LOW-LEVEL SYSTEM INFORMATION 3-9

Function Calling Sequence

This section discusses the standard function calling sequence, including stack
frame layout, register usage, parameter passing, etc. The operating system inter-
face and C programs use this calling sequence. See “Coding Examples’ later in
this chapter for more information on C.

All of the coding examples in this section are simply illustrations of a sample

NOTE | implementation.

|

Registers and the Stack Frame

The 68000 provides 8 data and 8 address registers, which are global to a running
program. Additionally, the MC68040, or the MC68881 /2 Floating Point Coproces-
sor, provides 8 global floating-point registers. Brief register descriptions appear
in Figure 3-14; more complete information appears later.

3-10 Motorola 68000 Family ABI SUPPLEMENT

Function Calling Sequence

Figure 3-14: Processor Registers

Type Names Usage

Q Q.
= O

Scratch registers

o)
=

o | o o° o oP
o)
(=)

Q.
N

68000 fi:aZ Local register variables

%ad
%ab $fp Frame pointer (if implemented)
%a’l %sp Stack pointer

spc Program counter

sccr Condition code register
sfp0 .
$£pl Scratch registers
$fp2

— Local register variables
MC68040, %fpT

MC68881 .
A $fpcr Floating Point Control Register
$fpsr Floating Point Status Register
sfpiar Floating Point Instruction

Address Register

In addition to the registers, each function has a frame on the run-time stack. This
stack grows downward from high addresses. Figure 3-15 shows the stack frame
organization right after function prologue processing has allocated the frame and
saved the registers (see below).

LOW-LEVEL SYSTEM INFORMATION 3-1

Function Calling Sequence

Figuré 3-15: Standard Stack Frame

Base Offset Contents Purpose
+4+4#n | argument long word n | . . High Addresses
incoming
arguments

+4 | argument long word 0

return address

$fp (optional) | previous %fp (optional)

unspecified
local storage
and register
(SP after save area
SP prologue) variable size
stack top, unused Low addresses

Several key points about the stack frame deserve mention.

B The stack frame is long word aligned.

Functions may save registers $d2 through %d7, sa2 through %a6, and $fp2
through %£p7 as necessary, without saving unused registers.

B All incoming arguments reside on the stack. “Coding Examples” below
explains how variable argument lists may be implemented.

B A frame pointer may be implcmentcd.

B Other areas depend on the compiler and the code being compiled. The stan-
dard calling sequence does not define a maximum stack frame size, nor does
it restrict how a language system uses the “unspecified”” areas of the stan-
dard stack frame.

Registers $d2 through %d7, %a2 through %a6, and %fp2 through %fp7, which are
visible to both a calling and a called function, “belong’ to the calling function. In
other words, a called function must save these registers’ values before it changes
them, restoring their values before it returns. Remaining registers “belong’ to
the called function. If a calling function wants to preserve such a register value

3-12 Motorola 68000 Family ABI SUPPLEMENT

Function Calling Sequence

across a function call, it must save the value in its local stack frame.

Across function boundaries, the standard function prologue saves registers $d2
through %$d7, $a2 through %a6, and %£p2 through $fp7 (as needed) and allocates
stack space, including the required areas of Figure 3-15 and any private space it
needs. The example below illustrates this, saving registers $fp, $d7, $a5, and
%fp2 and allocating 80 bytes for local storage.

Figure 3-16: Function Prologuee

fen:
link.1 %fp, &80
movm. 1 %d7/%a5, - (%sp)
fmovm.x %fp2, - (%sp)

The movm instruction manipulates registers as part of the normal function prolo-
gue and epilogue. As explained later, the function epilogue executes a movm
instruction to unwind the stack and restore the saved registers to their original
condition.

’ Strictly speaking, a function does not need the movm instructions if it

NOTE | preserves the registers as described above. Although some functions can

l | be optimized to eliminate the movm instructions, the general case uses the
{ standard prologue and epilogue.

Some registers have assigned roles.

%fp or %a6 The frame pointer, if used by an individual function, holds
the address of the local storage within a stack frame, refer-
enced as negative offsets from %fp.

%sp or %a’7 The stack pointer holds the limit of the current stack frame,
which is the address of the stack’s topmost valid long
word. The long word to which %sp points is “in” the valid
stack.

LOW-LEVEL SYSTEM INFORMATION 3-13

Function Calling Sequence -

%d0 lnh’gml return values appear in %d0.

a0 Pointer return values appear in $a0. When calling a func-
tion that returns a structure or union, the caller allocates
space for the return value and sets %a0 to its address. A
function that returns a structure or union value places the
same address in a0 before it returns.

sfp0 Floating-point return values appear in this register.

Except as specified here, 5d0, %d1, $a0, sal, %fp0, and %fpl are scratch regis-
ters. Functions do not need to preserve their values for the caller.

Local registers $d2 through %d7, sa2 through %a5, and %fp?2 through %fp7 have
no specified role in the standard calling sequence.

Signals can interrupt processes [see signa 1(BA_0S)|. Functions called during
signal handling have no unusual restrictions on their use of registers. Moreover,
if a signal handling function returns, the process resumes its original execution
path with registers restored to their original values. Thus programs and com-
pilers may freely use all registers without the danger of signal handlers changing
their values.

Integral and Pointer Arguments

As mentioned, a function receives all integral and pointer argument long words
on the stack. Functions pass all integer-valued arguments as long words,
expanding signed or unsigned bytes and words as needed.

The following examples use the frame pointer. Functions not using %fp
NOTE | would find arguments at different locations.

3-14 Motorola 68000 Family ABI SUPPLEMENT

Function Calling Sequence

Firgiureié-ﬁ; Integrai and Pointer Argtﬁeﬁts

Call Argument Callee

1 8 (%fp)

a(l, 2, 3, 2 12 (3£p)
(void #)0); 3 16 (5fp)
(void *)0 | 20(%fp)

Floating-Point Arguments

The stack also holds floating-point arguments: single-precision values use one
long word, double-precision use two, and extended-precision use four. The
example below uses only double-precision arguments.

Figurer 3-18: 7Fiorat7ing-7Pcr)iint7 Aréume?its

Call Argument Callee
long word 0, 1.414 8 (%fp)
l(mg word 1, 1.414 12 (%fp)

h(l1.414, 1, 1 16 (%fp)
2 ; i

2eeell) long word 0, 2.998e10 | 20 (%fp)

long word 1, 2.998e10 | 24 (%fp)

LOW-LEVEL SYSTEM INFORMATION

Function Calling Sequence __

Structure and Union Arguments

As described in the data representation section, structures and unions always
have the alignment of their most strictly aligned member. When passed as argu-
ments, sizes are rounded up to the next long word size. Structure and union
objects appear directly on the stack, occupying as many long words as necessary.

Figure 3-19: Structure and UhironiArrguiménis

Call i Argument Callee
1 8 (3p)
long word 0, s | 12 (%fp)
long word 1, 16 (%fp)

2]

Functions Returning Scalars or No Value

A function that returns an integral value places its result in $d0. A function that
returns a pointer value places its result in $a0. A function that returns a
floating-point value places its result in $£p0.

Functions that return no value put no specified value in any return register.

Just as the function prologue may save registers, the epilogue must restore those
same registers before returning to the caller. To complete the example from Fig-
ure 3-16, the following function epilogue restores d7, a5, and %fp2 and then
returns.

3-16 Motorola 68000 Family ABI SUPPLEMENT

Function Calling Sequence

F'igﬁ}gé-wziézir:ihction Epilogue

fmovm. x (ssp) +, $fp2
movm. 1 (%sp) +, $d7/%ab
unlk Sfp

rts

Functions Returning Structures or Unions

As mentioned above, when a function returns a structure or union, it expects the
caller to provide space for the return value and to place its address in register
3a0. Having the caller supply the return object’s space allows re-entrancy.

| Structures and unions in this context have fixed sizes. The ABI does not

NOTE | specify how to handle variable sized objects.

|

A function returning a structure or union also sets %$a0 to the value it finds in
%a0. Thus when the caller receives control again, the address of the returned
object resides in register $a0. Both the calling and the called functions must
cooperate to pass the return value successfully. Failure of either side to meet its
obligations leads to undefined program behavior.

The following example assumes the return object has been copied, and its
address is in register %a5.

LOW-LEVEL SYSTEM INFORMATION 3-17

Function Calling Sequence

Fiéﬁré 3:271” 7F[linrcitio}lr Epilagu—é B —

mov. 1 %a5, %al

fmovm. x %sp) +, $fp2
movm. 1 (%sp) +, %d7/%a5
unlk $fp

rts

3-18 Motorola 68000 Family ABI SUPPLEMENT

Operating System Interface

Virtual Address Space

Processes execute in a 32-bit virtual address space. Memory management
hardware translates virtual addresses to physical addresses, hiding physical
addressing and letting a process run anywhere in the system’s real memory.
Processes typically begin with three logical segments, commonly called text, data,
and stack. As Chapter 5 describes, dynamic linking creates more segments dur-
ing execution, and a process can create additional segments for itself with system
services.

Page Size

Memory is organized by pages, which are the system’s smallest units of memory
allocation. Page size can vary from one system to another, depending on the pro-
cessor, memory management unit and system configuration. Allowable page
sizes are 2K, 4K, or 8K. Processes may call sysconf (BA_OS) to determine the
system’s current page size.

Virtual Address Assignments

Conceptually, processes have the full 32-bit address space available. In practice,
however, several factors limit the size of a process.

B The system reserves a configuration-dependent amount of virtual space.
B A tunable configuration parameter limits process size.

B A process whose size exceeds the system’s available, combined physical
memory and secondary storage cannot run. Although some physical
memory must be present to run any process, the system can execute
processes that are bigger than physical memory, paging them to and from
secondary storage. Nonetheless, both physical memory and secondary
storage are shared resources. System load, which can vary from one pro-
gram execution to the next, affects the available amounts.

LOW-LEVEL SYSTEM INFORMATION 3-19

Operating System Interface

lEigiuiré 3-22: Virtual 7Ad7d|7‘és‘siéar/1fhi§ﬁration
OxfEEEFLES Reserved End of memory

Stack and
dynamic segments

Loadable segments
0 - Beginning of memory

\CAUTION Programs that dereference null pointers are erroneous. Although such
/ programs may appear to work on the 68000, they might fail or behave dif-
‘ ferently on other systems. To enhance portablhty., programmers are

i strongly cautioned not to rely on dereferencing null pointers.

Loadable segments
Processes’ loadable segments may begin at 0. The exact

addresses depend on the executable file format (see Chapters 4
and 5).

Stack and dynamic segments
A process’s stack and dynamic segments reside below the
reserved area. Processes can control the amount of virtual
memory allotted for stack space, as described below.

Reserved A reserved area resides at the top of virtual space.

i | Although application programs may begin at virtual address 0, they conven-

“ NOTE | tionally begin above 0x10000 (64K), leaving the initial 64K with an invalid

| address mapping. Processes that reference this invalid memory (for exam-
ple, by dereferencing a null pointer) generate an access exception trap, as
described in the “Exception Interface” section of this chapter.

|
\
1

As the figure shows, the system reserves the high end of virtual space, with a
process’s stack and dynamic segments below that. Although the exact boundary
between the reserved area and a process depends on the system’s configuration,
the reserved area shall not consume more than 512 MB from the virtual address

3-20 Motorola 68000 Family ABI SUPPLEMENT

Operating System Interface

space. Thus the user virtual address range has a minimum upper bound of
0xdffEfEFF. Individual systems may reserve less space, increasing processes’
virtual memory range. More information follows in the section “Managing the
Process Stack.”

Although applications may control their memory assignments, the typical
arrangement follows the diagram above. Loadable segments reside at low
addresses; dynamic segments occupy the higher range. When applications let
the system choose addresses for dynamic segments (including shared object seg-
ments), it chooses high addresses. This leaves the “middle” of the address spec-
trum available for dynamic memory allocation with facilities such as
malloc(BA_OS).

Managing the Process Stack

Section ““Process Initialization” in this chapter describes the initial stack contents.
Stack addresses can change from one system to the next—even from one process
execution to the next on a single system. Processes, therefore, should not depend
on finding their stack at a particular virtual address. The stack segment has read
and write permissions.

A tunable configuration parameter controls the system maximum stack size. A
process also can use setrlimit (BA OS), to set its own maximum stack size, up
to the system limit. Changes in the stack virtual address and size affect the vir-
tual addresses for dynamic segments. Consequently, processes should not
depend on finding their dynamic segments at particular virtual addresses. Facili-
ties exist to let the system choose dynamic segment virtual addresses.

Coding Guidelines

Operating system facilities, such as mmap (KE_0OS), allow a process to establish
address mappings in two ways. First, the program can let the system choose an
address. Second, the program can force the system to use an address the pro-
gram supplies. This second alternative can cause application portability prob-
lems, because the requested address might not always be available. Differences
in virtual address space can be particularly troublesome between different archi-
tectures, but the same problems can arise within a single architecture.

Processes” address spaces typically have three segment areas that can change size
from one execution to the next: the stack [through setrlimit (BA OS)], the data
segment [through malloc(BA OS)], and the dynamic segment area [through
mmap(KE_OS)]. Consequently, an address that is available in one process

LOW-LEVEL SYSTEM INFORMATION 3-21

Operating System Interface =~ —————— —

execution might not be available in the next. A program that used mm(?p(‘Kl: 0S)
to request a mapping at a specific address thus could appear to W(.)rk in some
environments and fail in others. For this reason, programs that wish to establish
a mapping in their address space should let the system choose the address.

Despite these warnings about requesting specific 'add.rcsscg the facility can b(‘
used properly. For example, a multiprocess appllcatlgn mlght map several “1_95)
into the address space of each process and build relative pointers among the files
data. This could be done by having each process ask for a certain amouqt of
storage at an address chosen by the system. After cach‘ process recerves its own,
private address from the system, it would map the de51.rcd files mt(.) memory, at
specific addresses within the original area. This C()“L‘Ctl()n.().f mappings cou.ld be
at different addresses in each process but their relative po.51t1<‘ms would be le.Od.
Without the ability to ask for specific addresses, the appllcatl(?n could not build
shared data structures, because the relative positions for files in each process
would be unpredictable.

Processor Execution Modes

Two execution modes exist in the 68000 architecture: user and supervisor.
Processes run in user mode (the least privileged). The operating system kernel
runs in supervisor mode. A program executes the trap instruction to change
execution modes.

The ABI does not define the implementation of individual system calls.

NOTE | Instead, programs shall use the system libraries that Chapter 6 describes.
Programs with embedded system call trap instructions do not conform to
the ABI.

3-22 Motorola 68000 Family ABI SUPPLEMENT

Exception Interface

As the 68000 user manuals describe, the processor also changes mode to handle
exceptions. Exceptions can be explicitly generated by a process as a result of
instruction execution. The operating system defines the following correspon-
dence between hardware exceptions and the signals specified by signal (BA OS).

Figure 3-23: Exceptlons anidisiénials

Operating System Interface

Exception Name Signal
trap #1 (breakpoint trap) SIGTRAP
external memory fault see below
address error SIGBUS
all floating-point exceptions | SIGFPE
illegal instruction SIGILL
integer zero-divide SIGFPE
privileged opcode SIGILL
trace SIGTRAP
chk, chk?2 instruction SIGFPE
cptrapcc, trapcc, trapv SIGFPE
line 1010 emulator STIGSYS
line 1111 emulator SIGSYS
trap #2-15 SIGSYS

An external memory fault exception can generate various signals, depending on
why the exception occurred.

SIGBUS OF SIGEMT
The process accessed a memory location in a way disallowed by the
current mapping’s permissions. As an example, the process tried to
store a value into a location without write permission.

SIGSEGV The process referenced a memory address for which no valid map-
ping existed.

LOW-LEVEL SYSTEM INFORMATION 3-23

Operating System Interface ____———

Process Initialization

This section describes the machine state that exec(BA 0S) creates for “infant

processes, including argument passing, register usage, stack frame‘ lag/l(.):lt, efc_
Programming language systems use this initial program state to establish a stan-
dard environment for their application programs. As an example, a C program
begins executing at a function named main, conventionally declared in the fol-
lowing way.

Fii;u}e 3-24: Declaration for main

[extern int main(int argc, char *argv[], char *envpl]);

Briefly, argc is a non-negative argument count; argv is an array of L
strings, with argv [argc]==0; and envp is an array of environment strings, also
terminated by a null pointer.

Although this section does not describe C program initialization, it gives the
information necessary to implement the call to main or to the entry point for a
program in any other language.

Registers

Registers d0 through %d7, $a0 through %a6, and all MC68040 or MC68881/2
FPCP floating-point data registers have unspecified values at process entry. The
floating-point control registers are set to provide IEEE default behavior. Conse-
quently, a program that requires registers to have specific values must set them
explicitly during process initialization. It should not rely on the operating system
to set all registers to 0. See “Process Stack” below for information about the ini-
tial values of the stack registers.

As the architecture defines, the status register controls and monitors the proces-
sor. Application programs cannot access the entire status register directly; they
run in the processor’s user mode, and the instructions to access the entire status
register are privileged. Nonetheless, a program can access the condition code
register, which initially has the following value.

3-24 Motorola 68000 Family ABI SUPPLEMENT

- Operating System Interface

Figure 3-25: Condition Code Register Fields
Field Value Note
XNZVC unspecified | Condition codes unspecified

Process Stack

When a process receives control, its stack holds the arguments and environment
from exec(BA OS).

LOW-LEVEL SYSTEM INFORMATION 3-25

Operating System Interface _

Figure 3-26: Initial Process Stack
Unspecified High Addresses

I L S
Information block, including
argument strings

environment strings

auxiliary information

size varies
Unspecified

Null auxiliary vector entry
Auxiliary vector

2-long word entries
0 long word
Environment pointers

|

one long word each
0 long word
Argument pointers

4(%sp) | Argument count long words
0 (%sp) Argument count Low Addresses
Undefined

Every process has a stack, but the system defines no fixed stack address. Further-
more, a program’s stack address can change from one system to another—even
from one process invocation to another. Thus the process initialization code
must use the address in %sp.

3-26 Motorola 68000 Family ABI SUPPLEMENT

Operating System Interface

Argument strings, environment strings, and auxiliary information appear in no
specific order within the information block; the system makes no guarantees
about their arrangement. The system may leave an unspecified amount of
memory between the null auxiliary vector entry and the start of the information
block.

Whereas the argument and environment vectors transmit information from one
application program to another, the auxiliary vector conveys information from
the operating system to the program. This vector is an array of the following
structures, interpreted according to the a type member.

Figure 3-27: Auxiliary Vector

typedef struct
{
int a type;
union {
long a val;
void *a ptr;
void (*a fcn) ()5
} a un;
} auxv t;

Figure 3-28: Auxiliary Vector Types, a type

Name Value a un
AT NULL 0 ignored
AT IGNORE 1 ignored
AT EXECFD 2 a val
AT PHDR 3 a ptr
AT PHENT 4 a val
AT PHNUM 5 a val
AT PAGESZ 6 a val

LOW-LEVEL SYSTEM INFORMATION 3-27

Operating System Interface

Figufe 3-28: Aux}liargf Vector T\}bés,iai t.;p;) };;nfinued)

AT NULIL
AT TGNORE
AT EXECFD
AT PHDR
AT PHENT

AT PHNUM

3-28

Name Value a un
AT BASE 1 a ptr
AT FLAGS 8 a val
AT ENTRY 9 a ptr

The auxiliary vector has no fixed length; instead its last entry’s
a type member has this value.

This type indicates the entry has no meaning. The correspond-
ing value of a un is undefined.

As Chapter 5 describes, exec(BA OS) may pass control to an
interpreter program. When this happens, the system places
either an entry of type AT ExECFD or one of type AT PHDR in the
auxiliary vector. The entry for type AT EXECFD uses the a val
member to contain a file descriptor open to read the application
program’s object file.

Under some conditions, the system creates the memory image
of the application program before passing control to the inter-
preter program. When this happens, the a_pt r member of the
AT PHDR entry tells the interpreter where to find the program
header table in the memory image. If the AT PHDR entry is
present, entries of types AT PHENT, AT PHNUM, and AT ENTRY must
also be present. See Chapter 5 in both the System V ABI and the

processor supplement for more information about the program
header table.

The a val member of this entry holds the size, in bytes, of one
entry in the program header table to which the AT PHDR entry
points.

The a val member of this entry holds the number of entries in
the program header table to which the AT PHDR entry points.

Motorola 68000 Family ABI SUPPLEMENT

Operating System Interface

AT PAGESZ If present, this entry’s a val member gives the system page
size, in bytes. The same information also is available through
sysconf(BA OS).

AT BASE The a ptr member of this entry holds the base address at which
the interpreter program was loaded into memory. See “Pro-
gram Header” in the System V ABI for more information about
the base address.

AT FLAGS If present, the a val member of this entry holds one-bit flags.
Bits with undefined semantics are set to zero. No flags are
defined for the 68000.

AT ENTRY The a ptr member of this entry holds the entry point of the
application program to which the interpreter program should
transfer control.

Other auxiliary vector types are reserved.

In the following example, the stack resides at an address below 0x£0000000,
growing toward lower addresses. The process receives three arguments.

W cp

B src

B dst
Italso inherits two environment strings (this example is not intended to show a
fully configured execution environment).

B 1OME=/home/dir

B paTH=/home/dir/bin:/usr/bin:
Its auxiliary vector holds one non-null entry, a file descriptor for the executable
file.

B (AT EXECFD, 13}

LOW-LEVEL SYSTEM INFORMATION 3-29

Operating System Interface

#igure 3-29: Eké}h;;lé Process Stack

Oxeffffffc

oxeffffff0

oxefffffel

Oxefffffdo

Oxefffffc8

OxefffffcO

Oxefffffb0

Oxefffffal

ssp, Oxefffff9o8
-4 (%sp), Oxefffffo4

3-30

o [0
\O s r (-
*TRY'H*E_# s 7~£4~

/[a | i |
h | o | m | e
M T E =17
- |\ | H | O
7 | b | i |n
7 [u | s | £
5 1 i | 0 | :
o | i | r | /|
e T | e |7
" | =]/ | b
== L=]
we | B L& | =
0
0
13 B
2
. |
Oxefffffc9 |
Oxefffffeb S
L
T Oxeffffff5
T Oxeffffff9 |
Oxeffffffd
——————

" Undefined

High addresses

Auxiliary Vector

Environment vector

Argument Vector
Argument Count

Low addresses

Motorola 68000 Family ABI SUPPLEMENT

Coding Examples

This section discusses example code sequences for fundamental operations such

as calling functions, accessing static objects, and transferring control from one

part of a program to another. Previous sections discuss how a program may use

the machine or the operating system, and they specify what a program may and |
may not assume about the execution environment. The information here illus-
trates how operations may be done, not how they must be done.

As before, examples use the ANSI C language. Other programming languages
may use the same conventions displayed below, but failure to do so does not
prevent a program from conforming to the ABL. Two main object code models
are available.

B Absolute code. Instructions can hold absolute addresses under this model. To
execute properly, the program must be loaded at a specific virtual address,
making the program’s absolute addresses coincide with the process’s virtual
addresses.

W Position-independent code. Instructions under this model hold relative
addresses, not absolute addresses. Consequently, the code is not tied to a
specific load address, allowing it to execute properly at various positions in
virtual memory.

The following sections describe the differences between these models. Code
sequences for the models (when different) appear together, allowing easier com-
parison.

| Examples below show code fragments with various simplifications. They are
NOTE | intended to explain addressing modes, not to show optimal code sequences
nor to reproduce compiler output.

When other sections of this document show assembly language code
NOTE | sequences, they typically show only the absolute versions. Information in

| this section explains how position-independent code would alter the exam-
ples.

LOW-LEVEL SYSTEM INFORMATION 3-31

Coding Examples

Code Model Overview

When the system creates a process image, the executable file portion of the pro-
cess has fixed addresses, and the system chooses shared object virtual addresses
to avoid conflicts with other segments in the process. To maximize text sharing,
shared obiject libraries conventionally use position-independent code, in which
instructions contain no absolute addresses. Shared object text segments can be
loaded at various virtual addresses without having to change the segment
images. Thus multiple processes can share a single shared object text segment,
even though the segment resides at a different virtual address in each process.

Position-independent code relies on two techniques.

m Control transfer instructions hold addresses relative to the program counter
(PC). A PC-relative branch or function call computes its destination address
in terms of the current program counter, not relative to any absolute address.

B When the program requires an absolute address, it computes the desired
value. Instead of embedding absolute addresses in the instructions, the com-
piler generates code to calculate an absolute address during execution.

Because the processor architecture provides PC-relative call and branch instruc-
tions, compilers can satisfy the first condition easily.

A global offset table and a procedure linkage table provide information for address
calculation. Position-independent object files (executable and shared object files)
have these tables in their data segment. When the system creates the memory
image for an object file, the table entries are relocated to reflect the absolute vir-
tual addresses as assigned for an individual process. Because data segments are

private for each process, the table entries can change—unlike text segments,
which multiple processes share.

Assembly language examples below show the explicit notation needed for
position-independent code.

name@GoT This expression denotes the displacement in the global offset table
of the entry for the symbol name.

name@rrr This expression denotes the displacement in the procedure linkage
table of the entry for the symbol name.

3-32 Motorola 68000 Family ABI SUPPLEMENT

Coding Examples

name@GOTPC
This expression denotes a PC-relative reference to the global offset
table entry for the symbol namie.

name@pLTPC
This expression denotes a PC-relative reference to the procedure
linkage table entry for the symbol name.

Position-Independent Function Prologue

This section describes the function prologue for position-independent code. A
function’s prologue first allocates the local stack space. Position-independent
functions also set register %ab to the global offset table’s address, accessed with
the symbol GLOBAL OFFSET TABLE . Because %ab is private for each function and
preserved across function calls, a function calculates its value once at the entry.

"W As a reminder, this entire section contains examples. Using %ab is a con-

NOTE | vention, not a requirement; moreover, this convention is private to a function.

| | Not only could other registers serve the same purpose, but different func-
[tions in a program could use different registers.

‘ When an instruction uses cLoBaL orrseT TABLE @coTpc, it sees the offset

| NOTE

between the current instruction and the global offset table as the symbol
value.

F'igure 3-30: Porsrition-rlndépe’ndienti Function ?’roloigue?

name :
link.1 sfp, &80
movm. 1 %a5, - (%sp)
lea (¥pc, GLOBAL OFFSET TABLE @GOTPC), %ab

LOW-LEVEL SYSTEM INFORMATION 3-33

Coding Examples

Data Objects

This discussion excludes stack-resident objects, because programs always com-
pute their virtual addresses relative to the stack apd frame pm.nters. Insteag, this
section describes objects with static storage duration. ‘Symbohc referen;es in
absolute code put the symbols’ values—or absolute virtual addresses—into
instructions.

Figure73-31: Absolute Load and Store

C Assembly

e%fe;rn int .global

sSre;r
extern int dst;
extern int *ptr;
ptr = &dst;

src,dst,ptr

&dst, ptr

src, ([ptrl)

Position-independent code cannot contain absolute addresses. Referencing glo-
bal symbols must be done with a base register and global offset table index (as in
these examples). Alternatively, instructions that reference symbols hold the PC-
relative offsets into the global offset table. Combining the offset with the PC
gives the absolute address of the table entry holding the desired address.

3-34 Motorola 68000 Family ABI SUPPLEMENT

Coding Examples

Figure 3-32: Position-Independent Load and Store

C Assembly

Textern int 'src; .global src,dst,ptr
extern int dst;
extern int #*ptr;

ptr = &dst; mov. 1l %a5,dst@cor), ([%a5,ptr@cor])
*ptr = src; mov.1l ([%ab,ptr@cor]), sad
| mov.l ([%ab,src@coT]), (%ad)

Function Calls

Function calls in absolute code put the symbols’ values—or absolute virtual
addresses—into instructions. Programs use the jsr or bsr instructions to make
function calls. For absolute code, the destination operand is an absolute address.
Even when the code for a function resides in a shared object, the caller uses the
same assembly language instruction sequence, although in that case control
passes from the original call, through an indirection sequence, to the desired des-
tination. See ““Procedure Linkage Table”” in Chapter 5 for more information on
the indirection sequence.

IEigure 3-33: Absolute Direct Function Call

C Assembly
extern void function () ; .global function
function () ; jsr function

LOW-LEVEL SYSTEM INFORMATION 3-35

Coding Examples

For position-independent code, the bsr instruction’s destination operand is a
PC-relative value. Typically, the destination will be an entry in the procedure
linkage table mentioned above.

Figure 3-34: Position-lndependentT)irect Function Call

C Assembly

extern void function(); .global function
function () ; bsr function@PLTPC

Indirect function calls also use the jsr instruction.

léiau}é 5—3?: 7;\5;6i11te 'Indirea ’F—u;wtion Call

€ Assembly
extern void (¥ptr) (); .global ptr, name
extern void name () ;
ptr = name; mov. 1 &name, ptr
(*ptr) () jsr ([ptrl)

For position-independent code, the global offset table supplies absolute
addresses for all required symbols, whether the symbols name objects or func-
tions.

3-36 Motorola 68000 Family ABI SUPPLEMENT

Coding Examples

ﬁgure 3-36: Position-Independent Indirect Function Call

C Assembly
extern void (*ptr) (); .global ptr,name
extern void name () ;
ptr = name; mov. 1 (%a5, name@coT) , ([%a5,ptr@cor])
(*ptr) () ; mov. 1 ([%a5, ptr@cor]), %al
jsr (%a0)
Branching

Programs use branch instructions to control their execution flow. As defined by
the architecture, branch instructions can hold a PC-relative value with a range
that covers the entire address space.

ﬁ'@;d:ér Branb—rf@rﬁction, Both Models

C Assembly
label: .LO1:

goto label; bra.l .LO1

C switch statements provide multiway selection. When the case labels of a
switch statement satisfy grouping constraints, the compiler implements the
selection with an address table. The following examples use several simplifying
conventions to hide irrelevant details:

LOW-LEVEL SYSTEM INFORMATION 3-37

Coding Examples _—

B The selection expression resides in register $d0;
B case label constants begin at zero;

B case labels, default, and the address table use assembly names .Lcasei,
.Ldef,and .Ltab, respectively.

Address table entries for absolute code contain virtual addresses; the selection
code extracts an entry’s value and jumps to that address. Position-independent
table entries hold offsets; the selection code computes a destination’s absolute
address.

Figure 3-38: Absolute switch Code

C Assembly
switch (7) cmp. 1 %d0, &3
{ bhi .Ldef
case 0: asl.l &2 ,%d0
= Jmp ([%pc, %d0.1, .Ltab])
case 2: iun
is .Ltab: .long .Lcase0
case 3: .long .Ldef
e .long .Lcase?
default: .long .Lcase3

3-38 Motorola 68000 Family ABI SUPPLEMENT

Coding Examples

Figure 3-39: Position-Independent switch Code '

C

Assembly
switch () cmp . 1 $d0, &3
{ bhi .Ldef
case 0: mov. 1 (%pc, $d0.w*4, .Ltab) , 5d0
oL jmp (%$pc, 5d0, .Ltab)
case 2:
case 3:
default: ..
.Ltab: .long .LcaseO-.Ltab
}

.long .Ldef-.Ltab
.long .Lcase2-.Ltab
.long .Lcase3-.Ltab

C Stack Frame

Figure 3-40 shows the C stack frame organization. It conforms to the standard
stack frame with designated roles for unspecified areas in the standard frame.

LOW-LEVEL SYSTEM INFORMATION 3-39

Coding Examples —

Figure 3-40: C Stack Frame
Base Offset Contents Purpose
- +4+4%n

ment long word n | . ’ High Addresses
e & incoming 3

arguments
+4

sp’ (P before call)

argument long word 0

return address

|

unspecified
local storage
and register
save area

Sp (sP after call) variable size

outgoing arguments ‘
stack top, unused ’

Low addresses

Variable Argument List

Previous sections describe the rules for passing arguments. Unfortunately, some
otherwise portable C programs depend on the argument passing scheme, impli-
citly assuming that 1) all arguments reside on the stack, and 2) arguments appear
in increasing order on the stack. Programs that make these assumptions never
have been portable, but they have worked on many machines, including the
68000. Nonetheless, portable C programs should use the header files

<stdarg.h> or <varargs.h> to deal with variable argument lists (on 68000 and
other machines as well).

3-40 Motorola 68000 Family ABI SUPPLEMENT

i Coding Examples

Allocating Stack Space Dynamically

Unlike some other languages, C does not need dynamic stack allocation within a
stack frame. Frames are allocated dynamically on the program stack, depending
on program execution. The architecture supports dynamic allocation for those
languages that require it, and the standard calling sequence and stack frame sup-

port it as well. Thus languages that need dynamic stack frame sizes can call C
functions, and vice versa.

Figure 3-40 shows the layout of the C stack frame. The double line divides the
area allocated by the compiler from the dynamically allocated memory.
Dynamic space is allocated below the line as a downward growing heap whose
size changes as required. Typical C functions have no space in the heap. All
areas above the double line in the current frame have a known size to the com-
piler. Dynamic stack allocation thus takes the following steps.

1. Stack frames are long word aligned; dynamic allocation should preserve
this property. Thus the program rounds (up) the desired byte count to a
multiple of 4.

2.

The program decreases the stack pointer by the rounded byte count,
increasing its frame size. At this point, the “new”” space resides just below
the register save area at the bottom of the stack.

Even in the presence of signals, dynamic allocation is “safe.” 1f a signal inter-
rupts allocation, one of three things can happen.

B The signal handler can return. The process then resumes the dynamic alloca-

tion from the point of interruption.

The signal handler can execute a non-local goto, or longjmp [see
set jmp(BA_LIB)]. This resets the process to a new context in a previous
stack frame, automatically discarding the dynamic allocation.

B The process can terminate.

Regardless of when the signal arrives during dynamic allocation, the result is a
consistent (though possibly dead) process.

LOW-LEVEL SYSTEM INFORMATION 3-41

Coding Examples

at fixed offsets from the frame pointer; stack heap
al code is needed to free dynamiCally
resets the stack pointer and

Existing stack objects reside .
allocation doesn’t move them. No specia’
allocated stack memory. The function epilogue t
removes the entire stack frame, including the heap, from the stack. Naturally, a

program should not reference heap objects after they have gone out of scope.

3-42 Motorola 68000 Family ABI SUPPLEMENT

4. OBJECT FILES

S3Tid 103rga0 v

4 OBJECT FILES

ELF Header

Machine Information

Sections
Special Sections

Symbol Table

Symbol Values

Relocation
Relocation Types

Table of Contents

4-1

4-1

4-2
4-2

4-3
4-3

4-4

4-4

ELF Header

Machine Information

For file identification in e ident, the Motorola 68000 Family requires the follow-
ing values.

Fiig'urie 4-1: Motorola 68000 FraminTdenitificatiion,7e" ident

Position Value
e ident[EI CLASS] ELFCLASS32
e ident [IE1 DATA] ELFDATAZMSB

The ELF header’s e flags member holds bit flags associated with the file.
Motorola 68000 Fai’nily defines no flags; so this member contains zero. Processor
identification resides in the ELF header’s e machine member and must have the
value 4, defined as the name EM 68K.

OBJECT FILES 4-1

Sections

Special Sections

Various sections hold program and control information. Sections in the list
below are used by the system and have the indicated types and attributes.

Figure 4-2: 7S;;eiciiarl Sections

Name Type Attributes _
.got SHT PROGBITS SHF ALLOC + SHE WRITE
.plt SHT PROGBITS SHF ALLOC + SHF EXECINSTR
.got This section holds the global offset table. See “Coding Examples”
in Chapter 3 and ““Global Offset Table”” in Chapter 5 for more
information.
.plt This section holds the procedure linkage table. See “Procedure

Linkage Table” in Chapter 5 for more information.

4-2

Motorola 68000 Family ABI SUPPLEMENT

Symbol Table

Symbol Values

[f an executable file contains a reference to a function defined in one of its associ-
ated shared objects, the symbol table section for that file will contain an entry for
that symbol. The st shndx member of that symbol table entry contains

sHN UNDEE. This signals to the dynamic linker that the symbol definition for that
function is not contained in the executable file itself. If that symbol has been allo-
cated a procedure linkage table entry in the executable file, and the st value
member for that symbol table entry is non-zero, the value will contain the virtual
address of the first instruction of that procedure linkage table entry. Otherwise,
the st value member contains zero. This procedure linkage table entry address
is used by the dynamic linker in resolving references to the address of the func-
tion. See “Function Addresses” in Chapter 5 for details.

OBJECT FILES 4-3

Relocation

Relocation Types

Relocation entries describe how to alter the following instruction and data fields
(bit numbers appear in the lower box corners; byte numbers appear in the upper
box corners).

Figure 4-3: Relocatable Fields

{ 132)T 532 rﬁﬁz T"lkzs?zﬁ J
0 FERE [-
[b16 1 b16 \

b32 This specifies a 32-bit field occupying 4 bytes with arbitrary align-
ment. These values use the byte order illustrated below.

0%01020304 {’ 01 " 02 \ 03 \‘ 04 ‘\

4-4 Motorola 68000 Family ABI SUPPLEMENT

b16

b8

Qot32

Sml . - . Relocation

This specifies a 16-bit field occupying 2 bytes with arbitrary align-
ment.

0x0102 [“ 01 J' 027

This specifies a 8-bit field occupying 1 byte with arbitrary alignment.

This specifies a 32-bit field occupying 4 bytes with long word align-
ment. These bytes represent values in the same byte order as b32.

Calculations below assume the actions are transforming, a relocatable file into
either an executable or a shared object file. Conceptually, the link editor merges
one or more relocatable files to form the output. It first decides how to combine
and locate the input files, then updates the symbol values, and finally performs
the relocation. Relocations applied to executable or shared object files are similar
and accomplish the same result. Descriptions below use the following notation.

A

G

This means the addend used to compute the value of the relocatable
field.

This means the base address at which a shared object has been loaded
into memory during execution. Generally, a shared object file is built
with a 0 base virtual address, but the execution address will be dif-
ferent.

This means the address of the global offset table entry that will con-
tain the address of the relocation entry’s symbol during execution.
See “Coding Examples” in Chapter 3 and “Global Offset Table” in
Chapter 5 for more information.

OBJECT FILES 4-5

Relocation

This means the address of entry zero in the global offset table.

This means the place (section offset or address) of the procedure link-
age table entry for a symbol. A procedure linkage table entry
redirects a function call to the proper destination. The link editor
builds the initial procedure linkage table, and the dynamic linker
modifies the entries during execution. See “Procedure Linkage
Table”” in Chapter 5 for more information.

This means the address of entry zero in the procedure linkage table.
This means the place (section offset or address) of the storage unit
being relocated (computed using r of fset).

This means the value of the symbol whose index resides in the reloca-
tion entry.

A relocation entry’s r of fset value designates the offset or virtual address of
the first byte of the affected storage unit. The relocation type specifies which bits
to change and how to calculate their values. Because the Motorola 68000 Family
uses only E1£32 rela relocation entries, the relocation table entry holds the
addend. In all cases, the addend and the computed result use the same byte

order.

4-6

Motorola 68000 Family ABI SUPPLEMENT

Figure 4-4: Relocation Types

Name Value Field Calculation
R 68K NONE 0 none none
R 68K 32 1 b32 S + A
R 68K 16 2 b16 S + A
R 68K 8 3 b8 S + A
R 68K PC32 4 b32 S+ A-P
R 68K PCl6 5] bl16 S+A-P
R 68K PC8 6 b8 S+A-P
R 68K GOT32 7 b32 G+A-P
R 68K GOT16 8 blo G+A-P
R 68K GOT8 9 b8 G+A-P
R 68K GOT320 10 b32 G - G’
R 68K GOT160 11 bl6 G - G’
R 68K GOT8O 12 b8 G - G’
R 68K PLT32 13 b32 L+A-P
R 68K PLT16 14 bl6 L +A-P
R 68K PLT8 15 b8 L+A-P
R 68K PLT320 16 b32 L - L’
R 68K PLT160 17 bl6 I — L'
R 68K PLT8O 18 b8 L — L
R 68K COPY 19 none | none
R 68K GLOB DAT 20 Qot32 | S
R 68K JMP SLOT 21 got32 | S
R 68K RELATIVE 22 b32 B + A

Some relocation types have semantics beyond simple calculation.

R 68K GoT32

OBJECT FILES

Relocation

This relocation type resembles R 68K PC32, except it refers
to the address of the symbol’s global offset table entry and
additionally instructs the link editor to build a global offset
table.

4-7

Relocation

R 68K

R 68K

R 68K

R 68K

R 68K

R 68K

R 68K

R 68K

R 68K

R 68K

4-8

GOT16

GOT8

GOT320

GOT160

GOT80

PLT32

PLT16

PLT8

PLT320

PLT160

This relocation type resembles R 68k pPCl6, except it refers
to the address of the symbol’s global offset table entry and
additionally instructs the link editor to build a global offset
table.

This relocation type resembles R 68k pc8, except it refers to
the address of the symbol’s global offset table entry and
additionally instructs the link editor to build a global offset
table.

This relocation type resembles R 68k Gor32, except it refers
to the address of the symbol’s global offset table entry rela-
tive to the address of entry zero in the GOT.

This relocation type resembles R 68K GoT16, except it refers
to the address of the symbol’s global offset table entry rela-
tive to the address of entry zero in the GOT.

This relocation type resembles R 68k GoT8, except it refers to
the address of the symbol’s global offset table entry relative
to the address of entry zero in the GOT,

This relocation type resembles R 68k pc32, except it refers
to the address of the symbol’s procedure linkage table entry
and additionally instructs the link editor to build a pro-
cedure linkage table.

This relocation type resembles R 68k pcl6, except it refers
to the address of the symbol’s procedure linkage table entry
and additionally instructs the link editor to build a pro-
cedure linkage table.

This relocation type resembles R 68k pc8, except it refers to
the address of the symbol’s procedure linkage table entry
and additionally instructs the link editor to build a pro-
cedure linkage table.

This relocation type resembles kR 68k pLT32, except it refers
to the address of the symbol’s procedure linkage table entry
relative to the address of entry zero in the PLT.

This relocation type resembles R 68k p1T16, except it refers
to the address of the symbol’s procedure linkage table entry
relative to the address of entry zero in the PLT.

Motorola 68000 Family ABI SUPPLEMENT

R 68K PLT80

68K COPY

sl

R 68K GLOB DAT

R 68K JMP SLOT

68K RELATIVE

OBJECT FILES

Relocation

This relocation type resembles R 68K rL1T8, except it refers to
the address of the symbol’s procedure linkage table entry
relative to the address of entry zero in the PLT.

This relocation type assists dynamic linking. Its offset
member refers to a location in a writable segment. The sym-
bol table index specifies a symbol that should exist both in
the current object file and in a shared object. During execu-
tion, the dynamic linker copies data associated with the
shared object’s symbol to the location specified by the offset.

This relocation type resembles R 68K 32, except it is used to
set a global offset table entry to the specified symbol’s value.
The relocation type allows one to determine the correspon-
dence between symbols and global offset table entries. The
relocated field should be aligned on a long word boundary.
This relocation type does not use the addend.

This relocation type assists dynamic linking. Its offset
member gives the location of a global offset table entry. This
relocation type does ot use the addend.

This relocation type assists dynamic linking. The addend
member contains a value representing a relative address
within a shared object. The offset member gives a location
within the shared object for the final virtual address. The
dynamic linker computes the corresponding virtual address
by adding the virtual address at which the shared object was
loaded to the relative address. Relocation entries for this
type must specify 0 for the symbol table index.

4-9

5. PROGRAM LOADING AND DYNAMIC LINKING

DNDINIT JINVNAQ ANV DNIGVOT NVHOO0Hd 'S

5 PROGRAM LOADING AND
DYNAMIC LINKING

Program Loading

Dynamic Linking
Dynamic Section

Global Offset Table
Function Addresses
Procedure Linkage Table

Table of Contents

5-1

5-6
95
5-5
5-6
5-7

Program Loading

As the system creates or augments a process image, it logically copies a file’s seg-
ment to a virtual memory segment. When—and if—the system physically reads
the file depends on the program’s execution behavior, system load, etc. A pro-
cess does not require a physical page unless it references the logical page during
execution, and processes commonly leave many pages unreferenced. Therefore
delaying physical reads frequently obviates them, improving system perfor-
mance. To obtain this efficiency in practice, executable and shared object files
must have segment images whose file offsets and virtual addresses are
congruent, modulo the page size.

Virtual addresses and file offsets for Motorola 68000 Family segments are
congruent modulo 8 K (0x2000) or larger powers of 2. Because 8 KB is the max-
imum page size, the files will be suitable for paging regardless of physical page
size. Figure 5-1 is an example of an executable file.

Figdfe 5-1: Executable File

File Offset File Virtual Address
0 ELF header

Program header table

Other information

0x100 | Text segment 0x80000100
0x2be00 bytes 0x8002bef f

0x2bf00 Data segment 0x8004bf00
0x4e00 bytes 0x80050cff

0x30d00 Other information

PROGRAM LOADING AND DYNAMIC LINKING 5-1

Program Loading -

Figur; 5-2: Prograrn; Flea'derﬁségments

Member Text - Data
gre—— T pT LOAD PT LOAD
0x100 0x2bf00

0x8()000]00 0x8004bf00

unspeciﬁed unspecified

0x2be00 0x4e00

0x2be00 0x5e24

pF R+PF X pF R4 PF WHPE X

0x2000 0x2000

Although the example’s file offsets and virtual addresses are congruent modulo
8 K for both text and data, up to four file pages hold impure text or data (depend-
ing on page size and file system block size).

B The first text page contains the ELF header, the program header table, and
other information.

B The last text page holds a copy of the beginning of data.

The first data page has a copy of the end of text.

B The last data page may contain file information not relevant to the running
process.

Logically, the system enforces the memory permissions as if cach segment were
complete and separate; segments’ addresses are adjusted to ensure each logjical
page in the address space has a single set of permissions. In the example above,
the region of the file holding the end of text and the beginning of data will be
mapped twice: at one virtual address for text and at a different virtual address
for data.

The end of the data segment requires special handling for uninitialized data,
which the system defines to begin with zero values. Thus if a file’s last data page
includes information not in the logical memory page, the extrancous data must
be set to zero, not the unknown contents of the executable file. “Impurities” in

5-2 Motorola 68000 Family ABI SUPPLEMENT

— Program Loading

the other three pages are not logically part of the process image; whether the Sys-
tem expunges them is unspecified. The memory image for this program follows

. o,
assuming 4 KB (0x1000) pages.

#igﬁré 5-3: Process Image Segmenfs

Virtual Address Contents Segment
0x80000000 Header padding
0x100 bytes
0x80000100 Text segment
Text

0x2be00 bytes

0x8002bf00 | Data padding
0x100 bytes

0x8004b000 | Text padding
0xf00 bytes
0x8004bf00 Data segment

Data
0x4e00 bytes
0x80032d00 | Uninitialized data
0x1024 zero bytes
0x80033d24 Page padding
Ox2dc zero bytes

One aspect of segment loading differs between executable files and shared
objects. Executable file segments typically contain absolute code [see “Coding
Examples” in Chapter 3]. To let the process execute correctly, the segments must
reside at the virtual addresses used to build the executable file. Thus the system
uses the p vaddr values unchanged as virtual addresses.

PROGRAM LOADING AND DYNAMIC LINKING 5-3

Program Loading e e

On the other hand, shared object segments typically contain P"SiFiU“‘
independent code. This lets a segment’s virtual a.ddress change from one process
to another, without invalidating execution behavmr.. Though the system chooges
virtual addresses for individual processes, it mainta%ns the scgnjcnts’ relative posi-
tions. Because position-independent code uses relative addressing between seg-
ments, the difference between virtual addresses in memory must match the
difference between virtual addresses in the file. The following table shows possi-
ble shared obiject virtual address assignments for several processes, illustrating
constant relative positioning.

Figure 5-4: Example éhiarédidbj;tr:ti Siégirinient Addresses

Source Text Data Base Address
File 0x200 0x2a400 0x0
Process 1 | 0xc0080200 | 0xc00aa400 0xc0080000
Process 2 | 0xc0082200 | 0xc00ac400 0xc0082000
Process 3 | 0xd00c0200 0xd00ead00 0xd00c0000
Process 4 | 0xd00c6200 | 0xd00£0400 0xd00c6000

5-4 Motorola 68000 Family ABI SUPPLEMENT

Dynamic Linking

Dynamic Section

Dynamic section entries give information to the dynamic linker. Some of this
information is processor-specific, including the interpretation of some entries in
the dynamic structure.

DT PLTGOT On the 68000, this entry’s d_ptr member gives the address of
the first entry in the global offset table. As mentioned below,
the first three global offset table entries are reserved, and two
are used to hold procedure linkage table information.

Global Offset Table

Position-independent code cannot, in general, contain absolute virtual addresses.
Global offset tables hold absolute addresses in private data, thus making the
addresses available without compromising the position-independence and shara-
bility of a program’s text. A program references its global offset table using
position-independent addressing and extracts absolute values, thus redirecting
position-independent references to absolute locations.

Initially, the global offset table holds information as required by its relocation
entries [see “Relocation’” in Chapter 4]. When the dynamic linker creates
memory segments for a loadable object file, it processes the relocation entries,
some of which will be type R 68k _GLOB_DAT referring to the global offset table.
The dynamic linker determines the associated symbol values, calculates their
absolute addresses, and sets the appropriate memory table entries to the proper
values. Although the absolute addresses are unknown when the link editor
builds an object file, the dynamic linker knows the addresses of all memory seg-
ments and can thus calculate the absolute addresses of the symbols contained
therein.

If a program requires direct access to the absolute address of a symbol, that sym-
bol will have a global offset table entry. Because the executable file and shared
objects have separate global offset tables, a symbol may appear in several tables.
The dynamic linker processes all the global offset table relocations before giving
control to any code in the process image, thus ensuring the absolute addresses

PROGRAM LOADING AND DYNAMIC LINKING 5-5

Dynamic Linking

are available during execution.

The table’s entry zero is reserved to hold the address of the dynamic structure,
referenced with the symbol DYNAMIC. This allows a program, such as the
dynamic linker, to ﬁn’d its own dynamic structure yvithout having yet processed
its relocation entries. This is ospécially important for the dynamic linker, because
it must initialize itself without relying on other programs to relocate its memory
image.

The dynamic linker may choose different memory segment addr‘tjssos for the
same shared object in different programs; it may even choose different library
addresses for different executions of the same program. Nonetheless, memory
segments do not change addresses once the process imag.o is established. As long
as a process exists, its memory segments reside at fixed virtual addresses.

A global offset table’s format and interpretation are processor-specific. For the
Motorola 68000 Family an offset into the table is an unsigned value, allowing only
non-negative “subscripts” into the array of addresses.

Function Addresses

References to the address of a function from an executable file and the shared
objects associated with it might not resolve to the same value. References from
within shared objects will normally be resolved by the dynamic linker to the vir-
tual address of the function itself. References from within the executable file to a
function defined in a shared object normally will be resolved by the link editor to
the address of the procedure linkage table entry for that function within the exe-
cutable file.

To allow comparisons of function addresses to work as expected, if an executable
file references a function defined in a shared object, the link editor will place the
address of the procedure linkage table entry for that function in its associated
symbol table entry. [See “Symbol Values™ in Chapter 4]. The dynamic linker
treats such symbol table entries specially. 1f the dynamic linker is searching, for a
symbol, and encounters a symbol table entry for that symbol in the executable
file, it normally follows the rules below.

5-6 Motorola 68000 Family ABI SUPPLEMENT

Dynamic Linking

1. If the st shndx member of the symbol table entry is not sun UnDEF, the
dynamic linker has found a definition for the symbol and uses its
st_value member as the symbol’s address.

2. If the st shndx member is sUN UNDEIF and the symbol is of type ST FUNC
and the st value member is not zero, the dynamic linker recognizes this
entry as special and uses the st value member as the symbol’s address.

3. Otherwise, the dynamic linker considers the symbol to be undefined
within the executable file and continues processing.

Some relocations are associated with procedure linkage table entries. These
entries are used for direct function calls rather than for references to function
addresses. These relocations are not treated in the special way described above
because the dynamic linker must not redirect procedure linkage table entries to
point to themselves.

Procedure Linkage Table

Much as the global offset table redirects position-independent address calcula-
tions to absolute locations, the procedure linkage table redirects position-
independent function calls to absolute locations. The link editor cannot resolve
execution transfers (such as function calls) from one executable or shared object
to another. Consequently, the link editor arranges to have the program transfer
control to entries in the procedure linkage table. On the 68000, procedure linkage
tables reside in shared text, but they use addresses in the private global offset
table. The dynamic linker determines the destinations” absolute addresses and
modifies the global offset table’s memory image accordingly. The dynamic linker
thus can redirect the entries without compromising the position-independence
and sharability of the program’s text. Executable files and shared object files
have separate procedure linkage tables.

PROGRAM LOADING AND DYNAMIC LINKING 5-7

Dynamic Linking - — ———

ﬁguEe 5-5: Initial I;r?)(;ealj;é Ii_iknikaé;i';ble

I ——

T pur0: mov.l got_plus_4,- (%sp)

jmp ([guf;plusj])
nop
nop

.PLT1: jmp ([namel@GOTPC, spcl)
mov.l &offset, = (‘6sp)
bra .PLTO

JPLT2: jmp ([name2@GOTPC, %pcl)
mov . 1 soffset, = (‘6sp)
bra .PLTO J

Following, the steps below, the dynamic linker and the program “cooperate” to
resolve symbolic references through the procedure linkage table and the global

offset table.

5-8

When first creating the memory image of the program, the dynamic linker
sets the second and the third entries in the global offset table to special
values. Steps below explain more about these values.

For illustration, assume the program calls name1, which transfers control
to the label .p111.

The first instruction jumps to the address in the global offset table entry for
namel. Initially, the global offset table holds the address of the following
instruction, not the real address of namel .

Consequently, the program pushes a relocation offset (offset) on the stack.
The relocation offset is a 32-bit, non-negative byte offset into the relocation
table. The designated relocation entry will have type R 68K JMP SLOT, and
its offset will specify the global offset table entry used in the previous jmp
instruction. The relocation entry also contains a symbol table index, thus
telling the dynamic linker what symbol is being referenced, namel in this
case.

Motorola 68000 Family ABI SUPPLEMENT

Dynamic Linking

5. After pushing the relocation offset, the program then jumps to .pL10, the
first entry in the procedure linkage table. The mov. 1 instruction places the
value of the second global offset table entry (got_plus_4) on the stack, thus
giving the dynamic linker one long word of identifying information. The
program then jumps to the address in the third global offset table entry
(got_plus_8), which transfers control to the dynamic linker.

6. When the dynamic linker receives control, it unwinds the stack, looks at
the designated relocation entry, finds the symbol’s value, stores the “real”’
address for namel in its global offset table entry, and transfers control to
the desired destination.

7. Subsequent executions of the procedure linkage table entry will transfer
directly to namel, without calling the dynamic linker a second time. That
is, the jmp instruction at .prL11 will transfer to name1, instead of “falling
through” to the next instruction.

The Lb BIND NOW environment variable can change dynamic linking behavior. If
its value is non-null, the dynamic linker evaluates procedure linkage table entries
before transferring control to the program. That is, the dynamic linker processes
relocation entries of type R 68k JMP 51L0T during process initialization. Other-
wise, the dynamic linker evaluates procedure linkage table entries lazily, delay-
ing symbol resolution and relocation until the first execution of a table entry.

Lazy binding generally improves overall application performance, because
unused symbols do not incur the dynamic linking overhead. Nevertheless,
two situations make lazy binding undesirable for some applications. First,
the initial reference to a shared object function takes longer than subsequent
calls, because the dynamic linker intercepts the call to resolve the symbol.
Some applications cannot tolerate this unpredictability. Second, if an error
occurs and the dynamic linker cannot resolve the symbol, the dynamic linker
will terminate the program. Under lazy binding, this might occur at arbitrary
times. Once again, some applications cannot tolerate this unpredictability.
By turning off lazy binding, the dynamic linker forces the failure to occur dur-
ing process initialization, before the application receives control.

=
‘NOTE

PROGRAM LOADING AND DYNAMIC LINKING 5-9

2

6. LIBRARIES

S3ivdalt 9

6 LIBRARIES

~ System Library 6-1
Additional Entry Points 6-1
Support Routines 6-1
Global Data Symbols 6-2
m Application Constraints 6-2
. Clibrary = e
Additional Support Routines 6-3
A ~ System Data Interfaces 64
Data Definitions 6-4

Table of Contents i

System Library

Additional Entry Points

There are no additional entry points required by the Motorola 68000 Family Pr
cessor Supplement.

Support Routines

Besides operating system services, libsys contains the following processor-
specific support routine. The routine is also accessible named with a leading
underscore.

o-

char *sbrk (int incr);
This function adds incr bytes to the break value and changes the

allocated space accordingly. Incr can be negative, in which case the

amount of allocated space is decreased. The break value is the

address of the first location beyond the end of the data segment. The

amount of allocated space increases as the break value increases.

Newly allocated space is set to zero. If, however, the same memory

space is reallocated to the same process, its contents are undefined.

Upon successful completion, sbrk returns the old break value. Other-

wise, it returns —1 and sets errno to indicate the error.

LIBRARIES

6-1

System Library L) o L bag =l FLE SRSt

Global Data Symbols

The libsys library requires that some global external data objects be defined for
the routines to work properly. In addition to the corresponding data symbols
listed in the System V ABI, the following symbols must be provided in the sys-
tem library on all ABI-conforming systems implemented with the Motorola 68000
Family processor architecture. Declarations for the data objects listed below can

be found in the Data Definitions section of this chapter or immediately following
the table.

Figure 6-2: ﬁbsys, CiilobaIiExterr;ali Data SYrr;bblé

f1t rounds ‘huge val

Application Constraints

As described above, libsys provides symbols for applications. In a few cases, how-
ever, an executable is obliged to provide symbols for the library. In addition to th.t
application-provided symbols listed in this section of the System V ABI, conforming

applications on the Motorola 68000 Family processor architecture are also required
to provide the following symbols.

extern end;

This symbol refers neither to a routine nor to a location with iI’ltCI‘L“Stll1g
contents. Instead, its address must correspond to the beginning of a
program’s dynamic allocation area, called the heap. Typically, the heap
begins immediately after the data segment of the program’s executable
file. This value is normally provided by the static linker.

extern const int lib version;

This variable’s value specifies the compilation and execution mode for
the program. If the value is zero, the program wants to preserve the
semantics of older (pre-ANSI) C, where conflicts exist with ANSL. cher-
wise, the value is non-zero, and the program wants ANSI C semantics.
This value is normally provided by the compiler.

6-2 Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

C Library

Additional Support Routines

There are no additional support routines required by the Motorola 68000 Family
Processor Supplement.

LIBRARIES 6-3

System Data Interfaces

Data Definitions

This section contains standard header files that describe system data. These files
are referred to by their names in angle brackets: <name.h> and <sys/name.h>.
Included in these headers are macro definitions and data definitions.

The data objects described in this section are part of the interface between an
ABI-conforming application and the underlying ABI-conforming system where it
will run. While an ABI-conforming system must provide these interfaces, it is not
required to contain the actual header files referenced here.

ANSI C serves as the ABI reference programming language, and data definitions
are specificed in ANSI C format. The C language is used here as a convenient
notation. Using a C language description of these data objects does ot preclude
their use by other programming languages.

Figure 6-3: <assert.h>

extern void assert (const char *, const char *, int);
fdefine assert (EX) \
(void) ((EX) || (_ assert (§EX, FILE LINE), 0))

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

ﬁgure 6-4: ZIypZ h>

System Data Interfaces

#define U 01
#define L 02
#define N 04
fdefine S 010
#define P 020
fdefine C 040
#define B 0100
#define X 0200
extern unsigned char ctypel];
#define isalpha (c) ((ctypetl)[cl&(U] L))
#define isupper (c) ((ctypetl)[c]& U)
fdefine islower (c¢) ((ctypetl) [cl& L)
#define isdigit (c) ((ctypetl) [c]& N)
#define isxdigit (c) ((ctypetl) [cl& X)
fidefine isalnum(c) ((ctypetl) [c]&(U| L| N))
#define isspace (c) ((ctypetl) [c]& S)
#define ispunct (c) ((ctypetl) [c]& P)
#define isprint (c) ((ctypetl)[cl&(P| U| L| N| B))
#define isgraph (c) ((ctypetl) [c]&(P| U] L| N))
#define iscntrl (c) ((ctypetl) [c]& C)
#define isascii (c) (' ((c)&=0177))
#define toupper (c) ((ctypet+258) [c])
#define tolower (c) ((ctype+258) [c])
#define toascii (c) ((c)&0177)
\\ e e =W =l

LIBRARIES

6-5

System Data Interfaces

Figure 6-5: <dirent .h>

struct dirent (
ino t d ino;
off t d off;
unsigned short d reclen;
char d name(1];

6-6 Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

Figure 6-6: <errno.h>, Part 1 of 4

extern

#define
fdefine
#define
#define
fidef ine
fdefine
fdefine
tdefine
fdefine
#define
#define
#define
#define
ftdefine
fdefine
fidefine
fdefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
fdefine
#def ine
#define
#define

LIBRARIES

int errno;

EPERM
ENOENT
ESRCH
EINTR
ETO
FENXIO
E2BIG
ENOEXEC
EBADE
ECHILD
EAGAIN
ENOMEM
EACCES
EFAULT
ENOTBLK
FBUSY
EEXTST
EXDEV
ENODEV
ENOTDIR
EISDIR
ETNVAL
ENFILE
EMETLE
ENOTTY
ETXTBSY
EFBIG
ENOSPC
ESPIPE
EROFS
EMLINK
EPIPE

(S-S S

® N o

11
12
13
14
15
16
17
18
1.9
20
21
22
23
24
25
26
27
28
29
30
31
32

System Data Interfaces

6-7

System Data Interfaces

Figure 6-7: <crrno.h>, Part 2 of 4

6-8

fdefine
fdefine
fidefine
ftdefine
fdef ine
fdefine
#define
fdef ine
fidef ine
fdefine
fdefine
fidef ine
fdefine
fidefine
ftdefine
fidef ine
fdefine
ftdeline
fdefine
fdef ine
fidef ine
tdefine
fdefine
fdef ine
fidefine
fidefine

EDOM
FRANGE
ENOMSG
EIDRM
FCHRNG
EL2NSYNC
EL3HLT
EL3RST
FLNRNG
FUNATCH
FNOCS1
FL2HLT
EDEADLK
ENOLCK
FNOSTR
FNODATA
ETIME
ENOSR
FINONET
FENOPKG
FREMOTE
ENOLINK
FADV
ESRMNT
ECOMM
EPROTO

33

35
36
37

39
10
41
42
13
14
15
16
60
61
62
63
64
65

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

F-i;.lre 6-8: <errno.};>, Part 3 of 4

fidefine EMULTIHOP 74
fldefine EBADMSG 77
fdefine ENAMETOOLONG 78
fdefine EOVERFLOW 79
f#define ENOTUNIQ 80
fidefine EBADEFD 81
fidefine EREMCHG 82
fdefine ENOSYS 89
fdefine ELOOP 90
fdefine FERESTART 91
fldefine ESTRPIPE 92
#define ENOTEMPTY 158
fdefine ESTALE 162

/* The following errno values are optional. #*/

fldefine EWOULDBLOCK EDEADLK

fdefine EBADE 50
fdefine EBADR 51
#define EXFULL 52
fidefine ENOANO 53
fdefine EBADRQC 54
ftdefine EBADSLT 55
ftdefine EDEADLOCK 56
#define FBFONT 57
fidefine EDOTDOT 76
#fdefine ELIBACC 83
fdefine KLIBBAD 84
fdefine ELIBSCN 85

LIBRARIES 6-9

System Data Interfaces

Figure

ftdefine
fdefine
fdefine
#define
fdefine
#define
#define
#define
fdefine
#define
fdefine
fdefine
fdefine
fidefine

6-9: <crrno.h>, Part 4 of 4

ELIBMAX 86

FLIBEXEC 87

EINPROGRESS 128
FALREADY 129
ENOTSOCK 130
EDESTADDRREQ 131
FMSGS [Z2F 132
EPROTOTYPE 183

ENOPROTOOPT 134
FPROTONOSUPPORT
ESOCKTNOSUPPORT
EOPNOTSUPP 137
EPFNOSUPPORT 138
EAFNOSUPPORT 139

fldefine FADDRINUSE 140
#define KADDRNOTAVAIL 141
#define ENETDOWN 142
fdefine FNETUNREACH 143
#define ENETRESET 144
#define ECONNABORTED 145
fdefine ECONNRESET 146
#define ENOBUFS 1477
#define EITSCONN 148
ffdefine ENOTCONN 149
#define ESHUTDOWN 150
fdefine ETOOMANYREFS 151
fdefine ETIMEDOUT 152
fdefine ECONNREFUSED 153
#define EHOSTDOWN 156
#define EHOSTUNREACH 157
#define EPROCLIM 159
#define EUSERS 160
#define EDQUOT 161
fdefine EPOWERFAIL 163
\ S~
6-10

135
136

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-10: <fcnt1.h>, Part 1 of 2

f

#define O RDONLY
#define O WRONLY
#define O RDWR
fdefine O NDELAY
fdefine O APPEND
#define O SYNC
#define O NONBLOCK
#define O CREAT
#define O TRUNC
#define O EXCL
#define O NOCTTY

#define F DUPFD
#define F GETFD
#define I SETED
#define P GETFL
#define F SETFL
#define ¥ GETLK
#define F SETLK
#define F SETLKW
fdefine F FREESP

#define FD CLOEXEC
#define O ACCMODE

[un

04
010
020
0100
00400
01000
02000
04000

N = o

P d o - aWw
ES

LIBRARIES

System Data Interfaces

Figure 6-11: <fcnt1.h>, Part 2 of 2

typedef struct flock {
short 1 type;

short 1 whence;
off t 1 start;
off t 1 len;
long 1 sysid;
pid t 1 pid;

long pad(4];
} flock t;

#define I RDLCKO1
fdefine F WRICK 02
#define F UNLCK O3

Figure 6-12: ‘<float.h>

extern int f1t rounds;
#define FLT ROUNDS flt rounds

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-13: <fmtmsg.h>

- ST ARt 3 T

#define MM NULL 0L

#define MM HARD 0x000000011,
fdefine MM SOFT 0x000000021,
#define MM FI1RM 0x000000041,
#define MM RECOVER 0x000001001,
#define MM NRECOV 0x000002001,
#define MM APPL 0x000000081,
#define MM UTIL 0x000000101,
fdefine MM OPSYS 0x000000201,
fdefine MM PRINT 0x000000401,
#define MM CONSOLF 0x000000801,
#define MM NOSEV 0

#define MM HALT 1

#define MM ERROR 2

#define MM WARNING 3

#define MM INFO 4

#define MM NULLLBL ((char #*) 0)
#define MM NULLSEV MM NOSEV
#define MM NULLMC oL

#define MM NULLTXT ((char *) 0)
fdefine MM NULLACT ((char *) 0)
#define MM NULLTAG ((char *) 0)
#define MM NOTOK -1

#define MM OK 0x00

#define MM NOMSG 0x01

fdefine MM NOCON 0x04

LIBRARIES 6-13

System Data Interfaces

Figure 6-14: <ftw.h>

#define FTW PHYS 01
#define FTW MOUNT 02
#define FTW CHDIR 04
#define FTW DEPTH 010
#define FTW F 0
fdefine FTW D 1
#define FTW DNR 2
#define FTW NS
#define FTW SL 4
fdefine FTW DP 6
#define FTW SLN 7
struct FTW
(

int quit;

int base;

int level ;
)i

struct group {
char *gr name;
char *gr passwd;
I gid t gr gid;
char **gr mem;

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-16: <sys/ipc.h>

=

yi

#define
#define
#define
#define

#define
#define

#define
#define

L

struct ipc perm {

uid t

gid t

uid t

gid t

mode t
unsigned long
key t

long

IPC_CREAT
IPC_EXCL
IPC_NOWAIT
IPC_ALLOC

IPC_PRIVATE
IPC_RMID

IPC_SET
IPC_STAT

uid;
gid;
cuid;
cgid;
mode;
seq;
key;
pad[4];

0001000
0002000
0004000
0100000

(key t)0
10

11
12

LIBRARIES

6-15

System Data Interfaces

Figure 6-17: <langinfo.h>, Part1 of 2
#define DAY 1 1
#define DAY 2 2
#define DAY 3 3
#define DAY 4 4
#define DAY 5 5
#define DAY 6 6
#define DAY 7 7
#define ABDAY 1 8
#define ABDAY 2 9
#define ABDAY 3 10
#define ABDAY 4 11
#define ABDAY 5 12
#define ABDAY 6 13
#define ABDAY 7 14
#define MON 1 15
#define MON 2 16
#define MON 3 17
#define MON 4 18
#define MON 5 19
#define MON 6 20
#define MON 7 21
#define MON 8 22
#define MON 9 23
#define MON 10 24
#define MON 11 25
#define MON 12 26

6-16

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-18: <langinfo.h>, Part 2 of 2
#define ABMON 1 27
#define ABMON 2 28
#define ABMON 3 29
#define ABMON 4 30
#define ABMON 5 31
#define ABMON 6 32
#define ABMON 7 33
#define ABMON_ 8 34
#define ABMON_9 35
#define ABMON 10 36
#define ABMON 11 37
#define ABMON_ 12 38
#define RADIXCHAR 39
#define THOUSEP 40
#define YESSTR 41
#define NOSTR 42
#define CRNCYSTR 43
#define D_T FMT 44
tdefine D FMT 45
fdefine T FMT 46
#define AM STR 47
#define PM STR 48

L%

LIBRARIES

System Data Interfaces

Figure 6-19:

<limits.h>

#define

#undef
#undef
#undef
#undef
fundef
#unde f
#undef
#undef
#undef
#undef
#undef

/* the

#define
#define
fdefine
#define
#define
fdefine
#define
#define
#define
#define

MB_LEN MAX 5

ARG MAX
CHILD MAX
MAX_CANON
NGROUPS MAX
LINK MAX
NAME_MAX
OPEN MAX
PASS MAX
PATH MAX
PIPE BUF
MAX INPUT

#undef-fed values vary and should be
retrieved using sysconf () or pathconf() */

POSIX ARG MAX
_POSIX CHILD MAX
POSIX LINK MAX
POSIX MAX CANON
POSIX MAX INPUT
POSTX NAME MAX
POSIX NGROUPS MAX
POSIX OPEN MAX
POSIX PATH MAX
POSIX PIPE BUF

4096
6

8
255
255
14

0

16
255
512

fdefine NI, ARGMAX 9
fdefine NL LANGMAX 14
#define NI, MSGMAX 327767
#define NI NMAX 1
#define NL SETMAX 255
#define NL TEXTMAX 255
#define NZERO 20
#define TP MAX 17576
#define FCHAR MAX 1048576
AN
6-18

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-20: <locale.h>

/‘

~

struct lconv {
char *decimal point;
char *thousands sep;
char *grouping;
char *int curr symbol;
char *currency symbol;
char *mon decimal point;
char *mon_thousands sep;
char *mon grouping;
char *positive sign;
char *negative sign;
char int frac digits;
char frac digits;
char p cs precedes;
char p_sep by space;
char n _cs precedes;
char n sep by space;
char p sign posn;
char n sign posn;

} lconv;

#define LC CTYPE 0

f#define LC NUMERIC 3

#define LC TIME 2

#define LC COLLATE 1

#define LC MONETARY 4

#define LC MESSAGES S

#define LC ALL 6

fidefine NULL 0

LIBRARIES

6-19

System Data Interfaces

Figurer 6-21: <math.h>

(typedef union

| h val {
unsigned long i[2];
double d;
} h val;

fdefine HUGE VAl

extern const h val huge val;
huge val.d

Figure 6-22: <sys/mman.h>

#define PROT READ 0x1
fdefine PROT WRITE 0x2
fdefine PROT EXEC 0x4
#define PROT NONFE 0x0
fdefine MAP SHARED 1
#define MAP PRIVATE 2
fdefine MAP FIXED 0x10
#define MS SYNC 0x0
‘ kdefine MS ASYNC 0x1
fdefine MS INVALIDATE 0x2

6-20 Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-23: <mon.h>
struct hdr {
char *lpe;
char *hpc;
int nfns;
)i
struct cnt |
char *fnpc;
long ment ;
)i
typedef unsigned short WORD;
L S LAY N L e e Rt e A
Figure 6-24: <sys/mount .h>
fdefine MS RDONLY 0x01
fdefine MS DATA 0x04
#define MS NOSUID 0x10
fdefine MS REMOUNT 0x20
\
S L s

LIBRARIES 6-21

System Data Interfaces

I;irgl;;76-25: <£ys /msqg. h>

-

struct msqid ds |
struct msg

struct msg

unsigned long

unsigned long

unsigned long

pid t

pid t

time t

long

t ime

long

time

long
long

i

#define MSG NOKRROR

6-22

struct ipc perm

msg perm;
*msg_first;
*msg last;
msg cbytes;
msg gnum;
msg gbytes;
msqg lspid;
msqg lrpid;
msqg stime;
msqg susec;
msg rtime;
msg rusec;
msg ctime;
msg cusec;
pad(4];

010000

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-26: <netconfig.h>, Part 1 of 2

=

struct

}i

#define
#define
#define
fdefine
#define
#define
#define

-

netconfig {

char *nc netid;
unsigned long nc semantics;
unsigned long nc flag;

char *nc_protofmly;
char *nc proto;
char *nc device;
unsigned long nc nlookups;
char **nc_lookups;

unsigned long nc unused|[8] ;

NC TPI CLTS
NC TPT COTS
NC_TPT COTS ORD
NC_TP1 RAW
NC_NOFLAG

NC VISIBLE

NC BROADCAST

LIBRARIES

6-23

System Data Interfaces

Figure 6-27:

/

<netconfig.h>, Part 2 of 2

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

NC_NOPROTOFMLY "-"

NC_LOOPBACK
NC_INET
NC_IMPLINK
NC_PUP
NC_CHAOS
NC NS
NC_NBS
NC_ECMA
NC_DATAKIT
NC_CCITT
NC_SNA
NC_DECNET
NC_DLI
NC_IAT
NC_HYLINK
NC_APPLETALK
NC_NIT
NC_IEEE802
NC_0SI
NC_X25
NC_OSINET
NC_GOSIP
NC_NOPROTO
NC_TCP
NC_UDP
NC_ICMP

"loopback"
"inet"
"implink"
"pup "
"chaos"
"ng"
"nbs"
"ecma"
"datakit"
"cclte”
"sna"
"decnet"
"q1in
"lat"
"hylink"
"appletalk"
"nit"
"ieee802"
"osi"
"x25%
"osinet"
"gosip"
won

"tep"
"udp"

" cmp"

6-24

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-28: <netdir.h>

-

struct nd addrlist {
int n_cnt;
struct netbuf #*n_ addrs;

}i

struct nd hostservlist {

int h cnt;

struct nd_hostserv *h hostservs;
}i

struct nd hostserv {
char *h host;
char *h_serv;

}i

1
N

#define ND BADARG

#define ND NOMEM

#define ND OK

#define ND NOHOST

#define ND NOSERV

#define ND_NOSYM

#define ND OPEN

#define ND ACCESS

#define ND UKNWN

#define ND_NOCTRL

#define ND FAILCTRL

#define ND_SYSTEM

#define ND_ HOSTSERV

#define ND HOSTSERVLIST
#define ND ADDR

#define ND_ADDRLIST

#define ND_SET BROADCAST
#define ND SET RESERVEDPORT
#define ND CHECK RESERVEDPORT
#define ND MERGEADDR

[u

S WNHFHF WNEFEFOoOVUIIONUSE WN = O

#define HOST SELF "\\1"
#define HOST ANY "\\2"
#define HOST BROADCAST "\\an

LIBRARIES

6-25

System Data Interfaces

Figure 6-29: <nl types.h>

#define NI_SETD

typedef short nl item ;

typedef void *nl catd;

Figure 6-30: <sys/param.h>

#define
#define
fdefine
#define
#define

#define

#define
#define

HZ

NGROUPS UMIN
MAXPATHLEN
MAXSYMLINKS
MAXNAMELEN

NADDR

NBBY
NBPSCTR

sysconf (3)
0

1024

20

256

13

512 4//)

6-26

Motorola 68000 Family PROCESSOR ABI SUPPLEMENY

System Data Interfaces

F‘@u?@h <poli h>

%
struct pollfd {

int fd;

short events;

short revents;
bi
#define POLLIN 0x0001
#define POLLPRI 0x0002
#define POLLOUT 0x0004
#define POLLRDNORM 0x0040
#define POLLWRNORM POLLOUT
#define POLLRDBAND 0x0080
#define POLLWRBAND 0x0100
#define POLLNORM POLLRDNORM
#define POLLERR 0x0008
#define POLLHUP 0x0010
#define POLLNVAIL 0x0020

LIBRARIES 6-27

System Data Interfaces

ﬁgﬁre 6-32:

6-28

~

<sys/procset .h>
#define P INITPID 1
fdefine P INITUID 0
fidefine P INITPGID 0
fdefine P MYID (1)
typedef long id t;
typedef enum idtype {
P PID,
P PPID,
P _PGID,
P SID,
P CID,
P UID,
P GID,
P ALL
} idtype t;
typedef enum idop |
POP DIFF,
POP AND,
POP OR,
POP XOR
} ddop it
typedef struct procset |{
idop t p op;
idtype -t p lidtype;
id t p lid;
idtype t p ridtype;
id t p rid;
} procset t;

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

Figure 6-33: 7 ;pwd.h>

System Data Interfaces

LIBRARIES

struct passwd {
char *pw name;
char *pw passwd;
uid t pw uid;
gid t pw gid;
char *pw age;
char *pw comment ;
char *pw gecos;
char *pw dir;
char *pw shell;

)i

6-29

System Data Interfaces

Figure 6-34:

-

<sys/regset .h>

typedef
#define
typedef

#define
#define
#define
#define
#define
#define
#define
fdefine
#define
fdefine
#define
#define
#define
fdefine
#define
#define
#define
#define
#define

typedef

int
NGREG
greg_t

R DO
R D1
R D2
R D3
R D4
R DS
R D6
R D7
R A0
R Al
R A2
R A3
R A4
R A5
R A6
R A7
R SP
R PC
R PS

struct
int
int
int
int

} fpregset t;

greg t;
18
gregset _t [NGREG] ;

N~ Uae WN = O

el

10
11
12
13
14
15
15
16
17

fpregset {

f pcr;

f psr;

f fpiaddr;

f fpregs(8][3];

6-30

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-35: <sys/resource.h>

4 Y

#define RLIMIT CPU 0
#define RLIMIT FSIZE 1
f#define RLIMIT DATA 2
#define RLIMIT STACK 3
#define RLIMIT CORE 4
#define RLIMIT NOFILE 5
#define RLIMIT VMEM 6
#define RLIMIT AS RLIMIT VMEM

struct rlimit {
rlim t rlim cur;
rlim t rlim max;
)73

typedef unsigned long rlim t; /

LIBRARIES 6-31

System Data Interfaces

Figure 6-36: <rpc.h>, Part 1 of 12

#define MAX AUTH BYTES 400
#define MAXNETNAMELEN 255
#define HEXKEYBYTES 48

enum auth_stat {
AUTH_OK=0,
AUTH_BADCRED=1,
AUTH_REJECTEDCRED=2,
AUTH BADVERF=3,
AUTH_REJECTEDVERF=4,
AUTH_TOOWEAK=5,
AUTH INVALIDRESP=6,
AUTH FAILED=7

i

union des block {
struct {
unsigned long high;
unsigned long low;
} key;
char c(8];

6-32 Motorola 68000 Family PROCESSOR ABI SUPPLEMEN;

System Data Interfaces

Figure 6-37: <rpc.h>, Part 2 of 12

i N

struct opaque auth {
int oa_ flavor;
char *oa base;
unsigned int oa_ length;
}i

typedef struct {
struct opaque auth ah cred;
struct opaque auth ah verf;
union des_block ah key;
struct auth ops {
void (*ah nextverf) ();
int (*ah marshal) ();
int (*ah validate) ();
int (*ah refresh) ();
void (*ah destroy) ();
} *ah ops;
char *ah private;
} AUTH;

struct authsys parms {
unsigned long aup time;
char *aup machname;
uid t aup uid;
gid t aup gid;
unsigned int aup len;
gid t *aup gids;

i J

LIBRARIES 6-33

System Data Interfaces

Figure 6-38: <rpc.h>, Part 3 of 12

o

extern struct opaque auth null auth;

#define AUTH NONE 0

#define AUTH NULL 0

#define AUTH SYS 1

#define AUTH UNIX AUTH SYS

#define AUTH SHORT 2

#define AUTH DES 3

#define DES FAILED (err) ((err) > DESERR NOHWDEVICE)

6-34 Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-39: <rpc.h>, Part 4 of 12

)i

enum clnt stat {

RPC SUCCESS=0,

RPC CANTENCODEARGS=1,
RPC CANTDECODERES=2,
RPC CANTSEND=3,

RPC CANTRECV=4,
RPC_TIMEDOUT=bS,

RPC INTR=18,

RPC VERSMISMATCH=6,

RPC AUTHERROR=7,

RPC PROGUNAVAI1=8,
RPC_PROGVERSMISMATCH=9,
RPC PROCUNAVAIL-10,

RPC CANTDECODEARGS=11,
RPC SYSTEMERROR=12,

RPC UNKNOWNHOST=13,

RPC UNKNOWNPROTO=17,
RPC UNKNOWNADDR-19,

RPC NOBROADCAST-21,

RPC RPCBFFATLURE=14,

RPC PROGNOTREGISTERED=15,
RPC N2AXLATEFAILURE=22,
RPC UDERROR=23,

RPC TLIERROR-20,

RPC FAILED=16

fidefine RPC PMAPFAILURE RPC RPCBFAILURE

LIBRARIES

6-35

System Data Interfaces —

F'Tgure G-E <}§§h>, Part 5 6“3_ JiF I

fdefine RPC NONE 0
#define RPC NETPATH 1
kdefine RPC VISIBLE 2
#define RPC CIRCUIT V 3
fdefine RPC DATAGRAM V 1
fldefine RPC CIRCUIT N 5
fdefine RPC DATAGRAM N 6
#define RPC TCP 7
fdefine RPC UDP 8
fdefine RPC ANYSOCK -1
ffdefine RPC ANYFD RPC ANYSOCK

struct rpc err {
enum clnt stat re status;
union {
struct {
int errno;
int t errno;
} RE err;
enum auth stat RE why;
struct (
unsigned long low;
unsigned long high;
} RE vers;
struct {
long sl;
long s2;
} RE 1b;
} ru;

6-36 Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

Fiéure 6-41: ;rpc.l’;>, Part 6 of 12

System Data Interfaces

struct rpc createerr ({
stat cf stat;

struct rpc err cf error;

enum clnt

}i

typedef struct ({
AUTH *cl auth;
struct clnt ops ({

enum clnt stat (*cl call) ();

(*cl abort) ();

void (*cl geterr) ();

(*cl
(*cl

(*cl

ops;
*cl private;

netid;

tp;

void

freeres) ();
destroy) ()7
control) ();

int

void

int
} *cl
char
char *cl
char *cl
} CLIENT;

fdefine FEEDBACK REXMITI 1
fidefine FEEDBACK OK 2
CLSET TIMEOUT 1
#define CLGET TIMEOUT 2
#define CLGET SERVER ADDR

CLGET FD 6
CLGET SVC ADDR 7
CLSET FD CLOSE 8
CLSET FD NCLOSE 9
CLSET RETRY TIMEOUT 4
CLGET RETRY TIMEOUT 5

fidef ine

fdef ine
#define
fdef ine
fdefine
#def ine
fdef ine

LIBRARIES

6-37

System Data Interfaces

Figure 6-42: <rpc.h>, Part 7 of 12

6-38

extern struct
rpc_createerr rpc createerr;

enum xprt 75(_31_ {
XPRT DIED,
XPRT MOREREQS,
XPRT IDLE

)i
typedef struct ({
int xp fd;

unsigned short xp port;

struct xp ops {

int (*xp recv) ()

enum xprt stat (*xp stat) ();
int (*xp getargs) ();

int (*xp reply) ();

int (#*xp freeargs) ();

void
} *xp ops;

int Xp_ addrlen;
char *xp tp;
char *xp netid;

struct netbuf xp
struct

char xp raddr[16];

struct opaque auth xp verf;
char *xp pl;
char *xp p2;
char *xp p3;

} SVCXPRT;

(*xp destroy) ();

ltaddr;
netbuf xp rtaddr;

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-43: <rpc.h>, Part 8 of 12

4 N

struct svc req {

unsigned long rq prog;
unsigned long rq vers;
unsigned long rq _proc;
struct opaque auth rq cred;
char *rq_clntcred;
SVCXPRT *rq_xprt ;

}i

extern fd set svc_ fdset;
typedef struct fdset ({

long fds bits[32];
} fd set;

enum msg_type {
CALL=0,
REPLY=1
)i

enum reply stat {
MSG ACCEPTED=0,
MSG DENIED=1

Y

enum accept stat {
SUCCESS=0,
PROG_UNAVATIL=1,
PROG_MISMATCH=2,
PROC UNAVAIL=3,
GARBAGE, ARGS=4,
SYSTEM ERR=5

LIBRARIES 6-39

System Data Interfaces

Figure 6-44: <rpc.h>, Part 9 of 12

—

enum reject stat {
RPC_MISMATCH=0,
AUTH_ERROR=1

bi

struct accepted reply {
struct opaque_auth ar verf;
enum accept_stat ar_stat;
union {
struct {
unsigned long low;
unsigned long high;
} AR versions;
struct (
char *where;
xdrproc_t proc;
} AR results;
] ru;

}i

struct rejected reply ({
enum reject stat rj stat;
union {
struct {
unsigned long low;
unsigned long high;
} RJ versions;
enum auth stat RJ_why;
} ru;

6-40 Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-45: <rpc.h>, Part 10 of 12

-

struct reply body {
enum reply stat rp stat;
union {
struct accepted reply RP_ar;
struct rejected reply RP_dr;
} ru;

)i

struct call body {
unsigned long cb_rpcvers;
unsigned long cb_prog;
unsigned long cb vers;
unsigned long cb_proc;
struct opaque auth cb cred;
struct opaque auth cb verf;

}i

struct rpc msg {
unsigned long rm xid;
enum msg_type rm direction;
union {
struct call body RM cmb;
struct reply body RM rmb;
} ru;

)i

struct rpcb {
unsigned long r prog;
unsigned long r vers;
char *r netid;
char *r_addr;
char *r owner;

S

LIBRARIES

6-41

System Data Interfaces

Figure 6-46: <rpc.h>, Part 11 of 12

ﬁ

struct rpcblist
struct rpcb rpcb map;

struct rpcblist *rpcb next;

bi

enum xdr op {
XDR_ENCODE=0,
XDR DECODE=1,
XDR FREE=2

)i

struct xdr discrim {
int value;
xdrproc_t proc;

}i

enum authdes namekind {
ADN FULLNAME,
ADN NICKNAME

}i

struct authdes fullname
char #*name;
union des block key;
u long window;

}i

struct authdes cred {

enum authdes namekind adc namekind;
struct authdes fullname adc fullname;
unsigned long adc nickname;

)i

6-42

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-47: <rpc.h>, Part 12 of 12

; i

typedef struct ({

enum xdr op X _op;

struct xdr ops {
int (*x_getlong) ();
int (*x_putlong) () ;
int (*x getbytes) () ;
int (*x putbytes) () ;
unsigned int (*x getpostn) () ;
int (*x_setpostn) () ;
long * (*x_inline) () ;
void (*x_destroy) () ;

} *x ops;

char X _public;
char X private;
char x base;
int x_handy;

} XDR;

typedef int (*xdrproc t) ()
#define NULL xdrproc t ((xdrproc t)O0)

#define auth destroy (auth) ((* ((auth)->ah_ops->ah_destroy)) (auth))

#define clnt call(rh, proc, xargs, argsp, xres, resp, secs) \
((*(rh)->cl_ops->cl call) (rh, proc, xargs, argsp, xres, resp, Ssecs))

#define clnt freeres(rh, xres, resp) ((*(rh)->cl ops->cl freeres) (rh, xres, resp))

#define clnt geterr(rh, errp) ((*(rh)->cl ops->cl geterr) (rh, errp))

#define clnt control (cl, rq, in) ((*(cl)->cl ops->cl_control) (cl, rq, in))
#define clnt destroy(rh) ((* (rh) ->cl_ops->cl destroy) (rh))

#define svc destroy (xprt) (* (xprt) ->xp_ops->xp destroy) (xprt)

#define svc freeargs (xprt, xargs, argsp) \

(* (xprt) ->xp ops->xp freeargs) (('xprt,) , (xargs), (argsp))
#define svc getargs (xprt, xargs, argsp) \

(* (xprt) ->xp_ops->xp getargs) ((xprt), (xargs), (argsp))
#define svc getrpccaller (x) (& (x) ->xp_rtaddr)
#define xdr getpos (xdrs) (* (xdrs) ->x_ops->x_getpostn) (xdrs)
#define xdr setpos(xdrs, pos) (*(xdrs)->x ops->x setpostn) (xdrs, pos)
#define xdr inline(xdrs, len) (*(xdrs) ->x ops—>x_inline) (xdrs, len)
#define xdr destroy (xdrs) (* (xdrs) ->x_ops->x_destroy) (xdrs)

LIBRARIES 6-43

System Data Interfaces

Figure 6-48: <search.h>

L _— —
typedef struct entry { char *key; void *data; } ENTRY;
typedef enum { FIND, ENTER } ACTION;
typedef enum { preorder, postorder, endorder, leaf } VISIT;

6-44 Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-49: <sys/sem.h>

-

#define SEM UNDO 010000

#define GETNCNT 3

#define GETPID 4

#define GETVAL 5

#define GETALL 6

#define GETZCNT 7

fdefine SETVAL 8

#define SETALL 9

struct semid ds (
struct ipc perm sem perm;
struct sem *sem base;
char sem pad[2];
unsigned short sem nsems;
time t sem ot ime;
long sem ousec;
time t sem ctime;
long sem cusec;
long padl[4];

}i

struct sem {
unsigned short semval;
pid t sempid;
unsigned short semncnt ;
unsigned short semzent;

}i

struct sembuf {
unsigned short sem num;

short sem op;
short sem flg;

LIBRARIES

6-45

System Data Interfaces

Figure 6-50: <set jmp.h>

#define JBLEN 13

#define SIGJBLEN 64

typedef int jmp buf| JBLEN];
typedef int siqjmprbuf[;SIGJBLEN] 3

6-46 Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-51: <sys/shm.h>

//’

}i

struct shmid ds {

struct ipc perm shm perm;
int shm segsz;
struct anon map *shm amp;
unsigned short shm lkcnt;

char pad(2];

pid t shm 1pid;

pid t shm cpid;
unsigned long shm nattch;

unsigned long
time t

long

time t

long

time t

long

long

#define SHMLBA

#define SHM RDONLY
#define SHM RND

shm cnattch;
shm_atime;
shm ausec;
shm dtime;
shm dusec;
shm ctime;
shm cusec;
padl([4];

sysconf (31)

010000
020000

LIBRARIES

6-47

System Data Interfaces

Figure 6-50: <setjmp.h>

#define JBLEN 13

#define SIGJBLEN 64

typedef int jmp buf [_JBLEN] ;
typedef int sigjmp buf [SIGJBLEN] ;

6-46 Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-51: <sys/shm.h>

-

}i

N

struct shmid ds {

struct ipc perm shm_perm;
int shm segsz;
struct anon map *shm_amp;
unsigned short shm lkcnt;

char pad(2];

pid t shm lpid;

pid t shm cpid;

unsigned long
unsigned long
time t

long

time t

long

time t

long

long

#define SHMLBA

#define SHM RDONLY
#define SHM RND

shm nattch;
shm cnattch;
shm_atime;
shm_ausec;
shm dtime;
shm dusec;
shm ctime;
shm_cusec;
padl[4];

sysconf (31)

010000
020000

LIBRARIES

6-47

System Data Interfaces

Figure 6-52: <sigaction.h>

o

struct sigaction {

}i

#define
#define
#detine
#define
#define
#define

K\\jdefine

void
sigset t
int

SA_NOCLDSTOP
SA_NOCLDWAIT
SA_ONSTACK
SA_RESETHAND
SA_RESTART
SA_SIGINFO
SA_NODEFER

(*sa_handler) () ;
sa_mask;
sa_flags;

0x00000001
0x00000002
0x00010000
0x00020000
0x00040000
0x00080000
0x00100000

6-48

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-53:

<sys/siginfo.h>, Part 1 of 3

-

#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

#define
#define
#define
#define

SI_FROMUSER (sip)

SI_FROMKERNEL (sip)

SI_USER

ILL_ILLOPC
ILL_ILLOPN
ILL_ILLADR
ILL_ILLTRP
ILL_PRVOPC
ILL_PRVREG
ILL_COPROC
ILL_BADSTK
NSIGILL

FPE_INTDIV
FPE_INTOVF
FPE_FLTDIV
FPE_FLTOVF
FPE_FLTUND
FPE_FLTRES
FPE_FLTINV
FPE_FLTSUB
NSIGFPE

SEGV_MAPERR
SEGV_ACCERR
NSIGSEGV

BUS_ADRALN
BUS_ADRERR
BUS_OBJERR
NSIGBUS

0

@O s WN

NI UDWN -

w w N =

((sip)->si_code <= 0)

((sip)->si_code > 0)

LIBRARIES

6-49

System Data Interfaces

Figure 6-54:

e

6-50

<sys/siginfo.h>, Part 2 of 3

#define
#define
#define

#define
fdefine
ftdefine
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

kdefine
#define

#define
#define
#define
#define
#define
#define
#define
#define

TRAP BRKPT
TRAP_TRACE
NSIGTRAP

CLD_EXITED
CLD_KILLED
CLD_DUMPED
CLD_TRAPPED
CLD_STOPPED
CLD_CONTINUED
NSIGCLD

POLL_IN

POLL_OUT
POLL MSG
POLL ERR
POLL_PRI
POLL_HUP
NSIGPOLL

SI_MAXSZ
SI_PAD

si_pad
si_status
si_stime
si_utime
si_uid
si_addr
si_fd
si_band

it

2

2

1

2

3

4

5

6

6

1

2

3

4

5

6

6

128

((SI_MAXSZ/sizeof (int))-3)
_data. proc. pid

data. proc. pdata. cld. status
_data. proc. pdata. cld. stime
_data. proc. pdata. cld. utime
_data. proc. pdata. kill. uid
_data. fault. addr

_data. file. fd

_data. file. band

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-55: <sys/siginfo.h>, Part 3 of 3

e

typedef struct siginfo {
int si_signo;
int si_errno;
int si_code;
union {
int _pad[SI PAD];
struct { ;
pid t pid;
union {
struct {
uid t uid;
) kiu;
struct
clock t utime;
int _status;
clock t _stime;
} _cld;
} _pdata;
} _proc;
struct {
char * addr;
}
struct {
int _fd;
long _band;
} file;
} _data;
} siginfo t;

LIBRARIES

6-51

System Data Interfaces

Figure 6-56: <signal.h>, Part1o0f2

6-52

#def ine
#define
#define
#define
#def ine
#define
#tdefine
#define
#def ine
#def ine
fdefine
fdefine
#define
#define
#define
#define
#define
fdefine
fdefine
#define
fdefine
#define
fdef ine
#define
fdefine
#define
#define
#define
#define
#define
#define
#def ine
#def ine
#def ine
fdefine

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
S1GABRT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
S51GSEGV
S51GSYS
SIGPIPE
SIGALRM
SIGTERM
S5IGUSR1
SIGUSR2
S1GCLD
STGCHLD
STGPWR
STGWINCH
SIGPOLL
SIGSTOP
SIGTSTP
SIGCONT
SIGTTIN
S1GTTOU
SIGURG
SIG10
SIGXCPU
SIGXFSZ
SIGVTALRM
SIGPROF
SIGLOST

10
11
12
13
14
15
16
17
18
18
19
20
22
23
24
25!
26
27
33

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-57: <signal.h>, Part 2 of 2

o)

#define NSIG 65
fdefine MAXSIG 64
#define SIG BLOCK 0

f#define SIG UNBLOCK 1
fdefine SIG SETMASK 2

f#define SIG ERR (void (*) ()) -1
#define SIG IGN (void (*) ())1
fidefine SIG HOLD (void(*) ())2
#define SIG DFIL (void (*) ())0
f#define SS ONSTACK 0x00000001
fdefine SS DISABLE 0x00000002

struct sigaltstack ({

char *ss sp;
int ss size;
int ss flags;

)i
typedef struct sigaltstack stack t;
typedef struct sigset (
unsigned long s(2];
} sigset t;

#define SIGNO MASK OxFE

fdefine SIGDEFER 0x100
#define SIGHOLD 0x200
#define SIGRELSE 0x400
fdefine SIGIGNORE 0x800
#define SIGPAUSE 0x1000

LIBRARIES 6-53

System Data Interfaces

Figure 6-58: <sys/stat.h>, Part 1 of 2
#define ST FSTYPSZ 16
struct stat {
dev_t st _dev;
ino t st_ino;
mode_t st _mode;
nlink t st _nlink;
uid t st _uid;
gid t st_gid;
dev t st rdev;
off t st_size;
time t st _atime;
unsigned long st ausec;
time t st_mtime;
unsigned long st_musec;
time t st _ctime;
unsigned long st cusec;
timestruc t st _atim;
timestruc t st mtim;
timestruc t st _ctim;
long st _blksize;
long st _blocks;
char st_fstype[ST FSTYPSZ];
char st _padding[408];
}i J
6-54

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-59: <sys/stat.h>, Part 2 of 2

4 '

#define S IFMT 0xF000

#define S IFIFO 0x1000

#define S TFCHR 0x2000

#define S IFDIR 0x4000

#define S TFBLK 0x6000

#define S IFREG 0x8000

#define S IFLNK 0xA000

f#define S ISUID 04000

#define S ISGID 02000

#define S ISVTX 01000

#define S TRWXU 00700

#define S TRUSR 00400

#define S IWUSR 00200

#define S IXUSR 00100

#define S TRWXG 00070

#define S IRGRP 00040

#define S IWGRP 00020

#define S IXGRP 00010

#define S TRWXO 00007

#define S TROTH 00004

#define S IWOTH 00002

#define S IXOTH 00001

#define S ISFIFO(mode) ((mode & S IFMI) == S IFIFO)
#define S ISCHR(mode) ((mode & S IFMT) == S IFCHR)
#define S ISDIR(mode) ((mode & S IFMT) == S IFDIR)
#define S ISBLK(mode) ((mode & S IFMT) == S_IFBIK)
#define S TISREG(mode) ((mode & S IFMT) == S IFREG)

- _/

LIBRARIES 6-55

System Data Interfaces

Figure 6-60: <sys/statvfs.h>

/

#define FSTYPSZ 16

typedef struct statvfs |
unsigned long f bsize;
unsigned long f frsize;
unsigned long f blocks;
unsigned long f bfree;
unsigned long f bavail;
unsigned long f files;
unsigned long f ffree;
unsigned long f favail;
unsigned long f fsid;
char f basetype [FSTYPSZ];
unsigned long f flag;
unsigned long f namemax;
char f_fstr(32];

unsigned long f filler([16];
} statvfs t;

#define ST RDONLY 0x01
#define ST NOSUID 0x02

Figure 6-61: <stddef.h>

#define NULL 0

typedef int ptrdiff t;
typedef unsigned int size t;
typedef long wchar t;

6-56 Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-62: <stdio.h>
typedef unsigned int size t;
typedef long fpos_t;
#define NULL 0
#define BUFSIZ 1024
fdefine EOF (-1)
#define stdin (&_ _stdinb)
tdefine stdout (&_ _stdoutb)
#define stderr (&_ _stderrb)
extern FILE _ _stdinb;
extern FILE _ _stdoutb;
extern FILE _ _stderrb;
#define getchar () getc (stdin)
#define putchar (x) putc ((x),stdout)
#define SEEK SET 0
#define SEEK_CUR 1
#define SEEK END 2
#define L ctermid 9
#define L cuserid 9
#define P_tmpdir "/var/tmp/"
#define L_tmpnam (sizeof (P_tmpdir) + 15)

LIBRARIES

6-57

System Data Interfaces

Figure 6-63: <stdlib.h>

typedef struct (
int quot ;
int rem;
} div t;

typedef struct ({
long int
long int
} ldiv t;

typedef unsigned int

#define NULL

#fdefine EXIT FAILURE
#define EXIT _SUCCESS
ffdefine RAND MAX

extern unsigned char
#define MB CUR MAX

6-58

__Ctype[520]

quot ;
rem;

size t;
0
1
0

327767

ctypel];

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-64: <stropts.h>, Part 1 of 4
#define RNORM 0x000
#define RMSGD 0x001
#define RMSGN 0x002
#define RMODEMASK 0x003
#define RPROTDAT 0x004
#define RPROTDIS 0x008
#define RPROTNORM 0x010
#define FLUSHR 0x01
#define FLUSHW 0x02
#define FLUSHRW 0x03
#define S INPUT 0x0001
#define S HIPRI 0x0002
#define S OUTPUT 0x0004
#define S MSG 0x0008
#define S ERROR 0x0010
#define S HANGUP 0x0020
#define S RDNORM 0x0040
#define S WRNORM S _OUTPUT
#define S _RDBAND 0x0080
#define S WRBAND 0x0100
#define S BANDURG 0x0200
#define RS HIPRI 1
#define MSG HIPRI 0x01
#define MSG ANY 0x02
#define MSG BAND 0x04
#define MORECTL 1
#define MOREDATA 2
#define MUXID ALL (-1)

\

LIBRARIES

6-59

System Data Interfaces

Figure 6-65: <stropts.h>, Part 2 of 4

e —— !

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

STR

‘[,
17

NREAD
PUSH
POP

T LOOK

I
I

FLUSH

SRDOPT

I GRDOPT

I,,

I
I
I
i
I
T

STR
SETSIG
GETSIG
FIND
LINK

"UNLINK

RECVFD

I_PEEK

1

1
I
I
I
1

I

1
I

T,

I
I
I

I,

FDINSERT

SENDFD
SWROPT
GWROPT
LIST
PLINK
PUNLINK
FLUSHBAND
CKBAND
GETBAND

ATMARK

SETCLTIME
GETCLTIME
CANPUT

('S’ <<8B)

(STR|01)

(STR|02)

(STR|03)

(STR| 04)

(STR|05)

(STR| 06)

(STR|07)

(STR|010)
(STR|011)
(STR|012)
(STR|013)
(STR|014)
(STR|015)
(STR|016)
(STR|017)
(STR|020)
(STR|021)
(STR|023)
(STR|024)
(STR| 025)
(STR|026)
(STR|027)
(STR|034)
(STR|035)
(STR|036)
(STR|037)
(STR|040)
(STR|041)
(STR|042)

6-60

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

ﬁg;re. 6-66: <stropts.h>, Part 3 of 4

e

struct strioctl {

int ic cmd;
int ic timout;
int ic len;

char *ic dp;
1

struct strbuf ({

int maxlen;
int len;
char *buf ;

)i

struct strpeek {
struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

}i

struct strfdinsert ({
struct strbuf ctlbuf;
struct strbuf databuf;

long flags;
int fildes;
int offset;

}:

struct strrecvfd ({
int fd;
uid t uid;
gid t qgid;
char £i11:(8];

LIBRARIES

6-61

System Data Interfaces

Fligurieg-677 <str6pts -h>, Part 4 of 4

struct str mlist (
char liname[E"MNAMESZHI;
b

struct str list ({

int sl nmods;
struct str mlist *sl modlist;
)i
fldefine ANYMARK 0x01
fdefine LASTMARK 0x02
fldefine FMNAMESZ 8

struct bandinfo (
unsigned char bi _pri;
int bi flag;

6-62 Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-68: <termios.h>, Part 1 of 6

g N

#define NCC 8

#define NCCS 19
#define CTRL (c) ((c)&037)
#define IBSHIFT 8

#undef POSIX VDISABLE

typedef unsigned long tcflag t;
typedef unsigned char cc t;
typedef unsigned long speed t;

#define VINTR
#define VQUIT
#define VERASE
#define VKILL
#define VEOF
#define VEOL
#define VEOL2
#define VMIN
#define VTIME
#define VSWICH
f#define VSTART
#define VSTOP
#define VSUSP
#define VDSUSP
#define VREPRINT
#define VDISCARD
#define VWERASE
#define VLNEXT

® N s U As WN = O

= -]
S WNHOo

o
v

LIBRARIES 6-63

System Data Interfaces

Figure 6-69:

<termios.h>, Part 2 of 6

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CNUL
CDEL
CESC
CINTR
CQUIT
CERASE
CKILL
CEOT
CEOL
CEOL2
CEOF
CSTART
CSTOP
CSWTCH
CNSWTCH
CSsusp
CDSUSP
CRPRNT
CFLUSH
CWERASE
CLNEXT

IGNBRK
BRKINT
IGNPAR
PARMRK
INPCK
ISTRIP
INLCR
IGNCR
ICRNL
TUCLC
IXON
IXANY
IXOFF
IMAXBEL

0377

T\’

0177

034

l“l

r@r

04

0

0

04

021

023

032

0
CTRL('z")
CTRL("y")
CTRL("r’)
CTRL(’0")
CTRL (" w’)
CTRL("v")

0000001
0000002
0000004
0000010
0000020
0000040
0000100
0000200
0000400
0001000
0002000
0004000
0010000
0020000

6-64

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-70: <termios.h>, Part 3 of 6
#define OPOST 0000001
#define OLCUC 0000002
#define ONLCR 0000004
#define OCRNL 0000010
#define ONOCR 0000020
#define ONLRET 0000040
#define OFILL 0000100
#define OFDEL 0000200
#define NLDLY 0000400
#define NLO 0
#define NL1 0000400
#define CRDLY 0003000
#define CRO 0
#define CR1 0001000
#define CR2 0002000
#define CR3 0003000
#define TABDLY 0014000
#define TABO 0
#define TAB1 0004000
#define TAB2 0010000
#define TAB3 0014000
#define XTABS TAB3
#define BSDLY 0020000
#define BSO 0
#define BS1 0020000
#define VTDLY 0040000
#define VTO 0
#define VT1 0040000
#define FFDLY 0100000
#define FFO 0
#define FF1 0100000

LIBRARIES

6-65

System Data Interfaces

Figure 6-71:

e

<termios.h>, Part 4 of 6

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

K\\\fdefine

CBAUD
BO

B50
B75
B110
B134
B150
B200
B300
B600
B1200
B1800
B2400
B4800
B9600
B19200
EXTA
B38400
EXTB
CSIZE
Cs5
[&519)
Cs7
cs8
CSTOPB
CREAD
PARENB
PARODD
HUPCL
CLOCAL
LOBLK
RCV1EN
XMT1EN
CIBAUD
PAREXT

077600000
0
00200000
00400000
00600000
01000000
01200000
01400000
01600000
02000000
02200000
02400000
02600000
03000000
03200000
03400000
03400000
03600000
03600000
00000060
0
0000020
0000040
0000060
0000100
0000200
0000400
0001000
0002000
0004000
0010000
0020000
0040000
037700000000
04000000

6-66

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-72:

<termios.h>, Part 5 of 6

o

#define
#define
#define
tdefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

L

ISIG
ICANON
XCASE
ECHO
ECHOE
ECHOK
ECHONL
NOFLSH
TOSTOP
ECHOCTL
ECHOPRT
ECHOKE
FLUSHO
PENDIN
IEXTEN

IOCTYPE

0000001
0000002
0000004
0000010
0000020
0000040
0000100
0000200
0000400
0001000
0002000
0004000
0020000
0040000
0100000

0x££00

LIBRARIES

6-67

System Data Interfaces

Figure 6-73:

6-68

#define
#define
fdefine
#define

#define
#define
#define
fidefine
#define
#define
fdefine

struct

t

<termios. h>,'Part76 (Ri

TIOC
TCSANOW
TCSADRAIN
TCSAFLUSH

TCIFLUSH
TCOFLUSH
TCIOFLUSH
TCOOFF
TCOON
TCIOFF
TCION

ermios {
teflag t
teflag t
tcflag t
teflag t
char

cc t

(717 <<8)

(TTOC| 14)
(TTOC|15)
(TTOC| 16)

WNHONRO

iflag;
oflag;
cflag;

e 000

1flag;
padl;
¢ cc[NCCS];

Q
|

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-74: <sys7;me .h>, Part 1 ;f 2

4 h

#define CLK TCK *
f#define CLOCKS PER SEC 1000000
#define NULL 0

typedef long clock t;
typedef long time t;

struct tm {
int tm sec;
int tm min;
int tm hour;
int tm mday;
int tm mon;
int tm year;
int tm wday;
int tm yday;
int tm isdst;

):

struct timeval {
time t tv sec;
long tv usec;

)i

extern long timezone;
extern int daylight;
extern char *tzname[2];

/* starred values may vary and should be
retrieved with sysconf () of pathconf () #*/

LIBRARIES 6-69

System Data Interfaces

Figure 6-75: <sys/time.h>, Part 2 of 2

struct itimerval ({

struct timeval it interval;
struct timeval it value;

}i

#define ITIMER REAL 0
#define ITIMER VIRTUAL 1
#define ITIMER PROF 2

typedef struct timestruc {
time t tv sec;
long tv_nsec;

} £ imestrucit 5

ﬁgure 6-76: <sys/times.h>

struct tms {

clock t tms utime;
clock t tms_ stime;
clock t tms cutime;
clock_t tms cstime;

6-70 Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-77: <sys/tiuser.h>, Service Types

#define
#define

#define T COTS ORD

T CLTS
T_COTS

Fiaure 6-78: <sys/tiuser.h>, Transport Interface States

-

#define
#define
#define
#define
#define
#define
tdefine

N

fdefine T DATAXFER

T IDLE
T INCON
T INREL
T OUTCON
T OUTREL
T UNBND
T _UNINIT

LIBRARIES

6-71

System Data Interfaces

Figure 6-79:

<sys/tiuser.h>, User-level Events

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
fdefine
#define
#define
#define
#define
#define
#define
#define
#define
#define

T_ACCEPT1
T_ACCEPT2
T _ACCEPT3
T_BIND
T_CLOSE
T_CONNECT1
T_CONNECT2
T LISTN

T _OPEN
T_OPTMGMT
T_PASSCON
T RCV

T RCVCONNECT
T RCVDIS1

T
T,
T,

T

T7
T,,
T
T
T
T7

RCVDIS2
'RCVDIS3
'RCVREL

RCVUDATA
RCVUDERR
SND

_SNDDIS1

SNDDIS2

'SNDREL

SNDUDATA

T UNBIND

6-72

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-80: <sys/tiuser.h>, Error Return Values
#define TACCES 3
#define TBADADDR 1
#define TBADDATA 10
#define TBADF 4
#define TBADFLAG 16
#define TBADOPT 2
#define TBADSEQ 7
#define TBUFOVFLW 11
#define TFLOW 12
#define TLOOK 9
#define TNOADDR 5
#define TNODATA 13
#define TNODIS 14
#define TNOREL 17
#define TNOTSUPPORT 18
#define TNOUDERR 15
#define TOUTSTATE 6
#define TSTATECHNG 19
#define TSYSERR 8 J
LIBRARIES 6-73

System Data Interfaces

Figure 6-81:

<sys/tiuser.h>, Transport Interface Data Stru<ctures, 10f2

struct netbuf (
unsigned int maxlen;
unsigned int len;
char *buf;
}i
struct t bind {
struct netbuf addr;
unsigned int qglen;
b
struct t call {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;
b
struct t discon {
struct netbuf udata;
int reason;
int sequence;
}i
struct t info {
long addr;
long options;
long tsdu;
long etsdu;
long connect ;
long discon;
long servtype;
}i

6-74

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-82: <sys/tiuser.h>, Transport Interface Data Structures, 2 of 2

~

struct t optmgmt {
struct netbuf
long

}i

struct t uderr ({
struct netbuf
struct netbuf
long

)i

struct t unitdata {
struct netbuf
struct netbuf
struct netbuf

)i

N

opt;
flags;

addr;
opt;
error;

addr;
opt;
udata;

#define T BIND
#define T CALL
#define T DIS
#define T INFO
#define T OPTMGMT
#define T UDERROR
#define T UNITDATA

O AN D W=

LIBRARIES

6-75

System Data Interfaces

Figure 6-84: <sys/tLiuser.h>, Fields of Structures

#def ine
#define
#define

fdefine

Figure 6-85: <sys/tiuser.h>, Events Bitmasks

#define
#define
ftdef ine
tdef ine
ftdef ine
fdefine
#define
#define

fidef ine

6-76

T ADDR
T OPT
T UDATA
T ALL

T LISTEN

T CONNECT

T DATA

T EXDATA

T DISCONNECT
T ERROR

T UDERR

T ORDREL

T EVENTS

0x00000001
0x00000002
0x00000004
0x00000007

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x000000f f

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

#define T MORE
fdefine T EXPEDITED
#define T NEGOTIATE
#define T CHECK
fdefine T DEFAULT
fdefine T SUCC
fdefine T FAILURE

S

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040

Figdre 6-87: <sys/types.h>

typedef long

typedef long

typedef unsigned long
typedef long

typedef unsigned long
typedef int

typedef long

typedef unsigned long
typedef unsigned long
typedef long

typedef long

LIBRARIES

Lime t;
daddr t;
dev t;
gid

|2
ino t;
key t;
pid t;
mode L;
nlink t;
off t;

uid t;

6-77

System Data Interfaces

i:iguré 6-88: <ucontext .h>

finclude <sys/regset.h>

typedef struct {

int version;
gregset t gregs;

} mcontext t;

#def ine MCONTEXT VERSION 1

typedef struct ucontext ({

unsigned long uc flags;
struct ucontext *uc link;
sigset t uc_sigmask;
stack t uc_stack;
mcontext t uc_mcontext;
long uc filler(201];

} ucontext t;

ffdefine GETCONTEXT 0
ffdefine SETCONTEXT 1

Figure 6-89: <uio.h>

typedef struct iovec (
char *iov base;
int iov len;

} iovec t;

6-78 Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-90: <ulimit .h>

fdefine UL GETFSIZE 1
#define UL SETFSIZE 2

F;gIJTe 6-91: <uni;td.h>, Part 1 of 3

R A

#define R OK 4
#define W OK 2
#define X OK

fdefine F OK 0
#define F ULOCK 0
#define I LOCK 1
#define F TLOCK 2
fdefine I TEST 3
fdefine SEEK SET 0
#define SEEK CUR 1
fdefine SEEK END 2

fdefine POSIX JOB CONTROL 1
fdefine POSIX SAVED IDS 1
fundef POSIX VDISABLE

fdefine POSIX VERSION *
fdefine XOPEN VERSION *

/* starred values may vary and should be
retrieved with sysconf () of pathconf () */

LIBRARIES 6-79

System Data Interfaces

Figure 6-92:

—

,S C7

6-80

fidefine
#define
#define
ffdefine
#define
fdefine
fdefine
fidefine
tdefine
fidefine
#define
fidefine
fdefine
#define
#define
fidefine
fidefine
#define
fidefine
#define
fdef ine
fdef ine
fldefine
tdefine
ktdefine
ftdef ine
fdef ine

<unistd.h>, Part 2 of 3

SC
sC
_sC
_sc
_sc

sC

sc
7SC

sC
_sC
_sC

ARG MAX
CHILD MAX
CLK_TCK
NGROUPS MAX
OPEN MAX
JOB_CONTROL
SAVED DS
VERSTON
MAXUMEMV
MAXUPROC
MAXMSGS
NMSGHDRS

SC_SHMMAXSZ

sc_

_sc

sC_

SC

SHMMINSZ
SHMSEGS

NMSYSSEM
MAXSEMVL

SC NSEMMAP

sC
sC
sC
sC
sC
sC
sC
sC

5C

NSEMMS L,
NSHMMN I
TTIMER VIRT
ITIMER PROF
TIMER GRAN
PHYSMEM
AVA I LMFM
NICE

MEMCTI, UNIT

DR

21
22
23
24
25
26
27
28
29

30

Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

System Data Interfaces

Figure 6-93: <unistd.h>, Part3of3

fdefine SC SHMLBA 31
fdefine SC SVSTREAMS 32
fdefine SC CPUID 33
fdefine SC PASS MAX 34
fdefine SC PAGESIZE 36
#define SC XOPEN VERSION 37
#define PC LINK MAX 1
fdefine PC MAX CANON 2
#define PC MAX INPUT 3
#define PC NAME MAX 4
#define PC PATH MAX <3
#define PC PIPE BUF 6
fdefine PC CHOWN RESTRICTED 7
#define PC NO TRUNC 8
kdefine PC VDISABLE 9
#define PC BLKSIZE 10
f#define STDIN FILENO 0
fdefine STDOUT FILFENO 1
#define STDERR FILENO 2
Figure 6-94: <utime.h>
struct utimbuf {
time t actime;
time L modtime;
}:
\
/

LIBRARIES 6-81

System Data Interfaces

Figure 6-95: <utsname.h>
fidefine SYS NMLN 256

struct utsname (
char sysname [SYS NMLN] ;

char nodename [SYS NMLN] ;
char release [SYS NMLN] ;
char version[SYS NMIN] ;
char machine [SYS NMIN];

6-82 Motorola 68000 Family PROCESSOR ABI SUPPLEMENT

Figure 6-96:

fdefine
tdef ine
fdefine
fdefine
#define
fdefine
#def ine
fdefine

fidefine
#define
fdef ine

fdefine
fdefine
fdef ine

fdefine

fdef ine
fdef ine
fdefine
fdefine

| fidef ine

fidefine
' fdefine
‘k fdefine

LIBRARIES

<wait.h>

WSTOPPED
WCONT INUED
WUNTRACED
WNOHANG
WNOWA LT
WEXTTED
WTRAPPED
WTRACED

WSTOPFLG
WCONTKF' LG
WS IGMASK

WLOBYTE (stat)
WHIBYTE (stat)
WWORD (stat)

WCOREF LG

WCOREDUMP (stat)
WEXI'TSTATUS (s)
WIFCONT INUED (st
WIFEXTTED (5)
WIFSIGNALED (5)
WIFSTOPPED (5)
WSTOPSIG (5)
WTERMS G (5)

System Data Interfaces

0177

0010

0004

0100

0200

0001

0002

WITRAPPED

0177

01777117

0177

((int) ((stat)&0377))

((int) (((stat)>>8)&0377))

((int) ((stat))&0177777)

0200
((stat) &WCOREFLG)
(((s)&0xff00)>>8)

~at) (WWORD (stat) = =WCONTFLG)
(WIERMSIG (5) = =0)
('WIFEXITED (s5) && !WIFSTOPPED (s))
((WI'ERMSIG (s) 0x7f) && (((s)&0x80)==0))
(WIFSTOPPED (s) ?WEXTTSTATUS (s) :0)
((s)&0x71f)

6-83

Index

68000 1:1, 3:22, 40
68000 family 3:1
68008 1:1

68010 1:1

68020 1:1, 3:1

68030 1:1, 3:1

68040 1:1, 3:1,10-11
68851 3:1

68881 3:1,10-11, 24
68882 3:1,10-11, 24

A

%a0, pointer return value ~ 3: 16
%r0, structure return value — 3:17
%r2, structure return value — 3:17
ABI conformance 3:1, 22

see also undefined behavior 3:1

see also unspecified property 3:1
absolute code 3:31, 5:3

see also position independent code

3::31

address

stack 3:26

virtual 5:1
address error exception 3:23
address registers 3:10
addressing, virtual (see virtual address-

ing)
aggregate 3:3
alignment
array 3:3

bit-field 3:6

doubles in structures or unions 3:2-3
executable file 5:1

scalar types 3:1

Index

stack frame 3:

12, 41

structure and union 3: 3

allocation, dynamic stack space
ANSI, C (see C language, ANSI)

architecture
implementation
processor 3:1

argc 3:24
ill'glll]]Cl]lS

bad assumption
exec(BA_0OS)
floating-point
integer 3:14
main 3:24
pointer 3: 14
sign extension
stack 3:12, 14

structure and union 3: 16
variable list 3:40
argv 3:24
array 3:3
automatic variables 3: 40
auxiliary vector 3:26, 29

B

3:1

s 3:40
3.24
3:15

3:14

base address 3:29
behavior, undefined (see undefined

behavior)
bit field packing
bit-field 3:5

3:9

alignment 3:6
allocation 3:6

plain 3:6

3: 41

boot parameters (see tunable parameters)

bra instruction

G 7

Index B

branch instructions 3: 37
breakpoint trap exception 3:23
bsr instruction 3:35-36

C

C language

ANSI 3:1,24, 40

fundamental types 3:1

main 3:24

portability 3:40

switch statements 3: 37
calling sequence 3:10

function epilogue 3: 17

function prologue and epilogue 3: 33
%ccr (see condition code register)
char 3:2

signol 3:2
chk. chk2 instruction exception 3: 23
code generation 3: 31
code sequences 3: 31
condition code register 3: 24

initial value 3:24
configuration parameters (sce tunable

paramelters)

coprocessor protocol exception 3: 23
cptrapcc. trapcc, trapv exception 3: 23

D

%a0, sce also return value 3: 14
%d0
scee also return value 3: 14
integer return value — 3:16
data
process 3:19
uninitialized 5:2

data registers 3:10
data representation 3: 1
diskettes, floppy 2: 1
distribution media — 2: 1
double 3:2
double-precision 3:2, 15
dynamic linking 3:19, 5:5
environment 5:8
lazy binding 5:8
LD BIND NOW s5:8
relocation 5:5, 7
see also dynamic linker s:5
dynamic segments 3:20, 5:4
dynamic stack allocation 3: 44
signals 3: 41

E

emulation, instructions 3: 1
environment 3:29, 5:8

exec(BA OS) 3:24
envp 3:24
exceptions

interface 3:23

signals 3:23
exec(BA OS) 3:32

interpreter 3:28

paging 5:1

process initialization 3: 24
executable file, segments 5:3
execution mode (see processor execution

mode)

extended-precision 3:2, 15
external memory fault exception 3: 23

Motorola 68000 Family ABI SUPPLEMENT

faults (see traps)

file. object (see object file)

file offset 5:1

float 3:2

Floating Point Coprocessor

24

floating-point
arguments
IEEE 3:24
return value 3:16

floating -point data registers

3:23

3:2, 14
3:15

floating-point exception
fmovm.x instruction
format error exception 3: 23
formats

array 3.3

structure 3: 3

union 3:3
%fp (see frame pointer)
%fp0, floating-point return value
FPCP 3:1,10-11
frame pointer 3:12-13, 34

frame size, dynamic ~ 3: 41
function, void 3: 16
function call, code 3:35

3:24

3:18, 1617

8:

3: 1,,10-11,

16

function linkage (see calling sequence)

G

global offset table
GLOBAL OFFSET_TABLE _
%ab 3:33

relocation 3: 32

GLOBAL OFFSET_TABLE (sce global

offset table)

Index

3:33

3:32, 4:2,4,6-8, 5:5

heap, dynamic stack 3: 41

IEEE floating-point ~ 3: 24

illegal instruction exception 3: 23
initialization, process 3:24
installation, software 2:1
instructions

allowable 3:1

emulation 3:1
int 3:2
integer arguments 3: 14
integer zero-divide exception 3: 23

J
jmp instruction 5:7
jsrinstruction 3:35
L

lazy binding 5:8
LD BIND NOW 5:8
Id(SD CMD) (see link editor)
lea instruction 3:33
Level 1 1:3
Level 2 1:3
libsys 6:1
line 1010 emulator exception 3:23
line 1111 emulator exception 3:23
link editor 4:6-7, 5:5
link.l instruction 3:13, 33
local variables 3:40

long 3:2

Index

Index s = s =

long double 3:2

long word 3:12

longjmp(BA_LIB) (see
setjimp(BA_LIB))

M

main
arguments 3: 24
declaration 3:24
malloc(BA_0S) 3:21
media, distribution 2: 1
memory allocation, stack — 3: 40-41
memory fault exception 3:23
memory management 3: 19
mmap(KE 0S) 3: 21
modes, processor (see processor execu-
tion mode)
Motorola 68000 Family 5: 1
Motorola 68000 family, generic term
121
mov.l instruction 3:17, 34, 5:7
movm instruction 3: 13
movm.| instruction 3: 13, 16-17, 33

N

null pointer 3: 2, 20, 24
dereferencing 3:20

O

object file 4:1
ELF header 4: 1
executable 3:32
executable file 3:32
relocation 4:3

section 4:2
see also archive file 4 4
see also dynamic linking 5.5
sec also executable file 4 1
see also relocatable file 4 1
see also shared object file 4 4
segment 5: 1
shared object file 3: 32
special sections 4: 2

offset table, global (see global offset

table)
optimization 3:13

P

padding 3:3-4
requirements: structure, padding 3:3
requirements for 3:3
structure and union 3:3
page size 3:19, 29, 5: 1
Paged Memory Management Unit 3: 1
paging 3:19, 5:1
performance 5: 1
parameters, system configuration (see tun-
able parameters)
PC-relative 3:32, 37
performance 3: 1
paging 5:1
physical addressing 3: 19
plain bit field 3:6
PMMU 3:1
pointer 3:2
function argument 3: 14
null 3:2, 20, 24
portability
C program 3:40
instructions 3: 1
position-independent code 3:31-33, 5: 4

Motorola 68000 Family ABI SUPPLEMENT

see also absolute code 3: 31
see also global offset table 3: 31
see also procedure linkage table 3: 31
privileged opcode exception 3:23
procedure linkage table 3:32-33, 4:2.5,
7, 5:5-6
relocation 3: 32
procedures (see functions)
process
dead 3:41
entry point ~ 3: 24
initialization ~ 3: 24
segment 3:19
size 3:19
stack 3:25
virtual addressing 3: 19
processor architecture 3: 1
processor execution mode 3: 22, 24
processor supervisor mode 3: 22
processor-specific information 3: 1,10,
19,31, 5:1,5-6, 6:1
program counter, relative addressing (see
PC-relative)
program loading ~ 3:28, 5: 1
Programmer’s Reference Manual = 3: 1
purpose of ABI 1:1

Q

QIC cartridge 2: 1

R

re-entrancy 3: 17
registers

address 3:10

calling sequence 3:13

Index

Index

data 3:10
description 3:10-11, 13
floating-point 3: 10
¢lobal 3:10
initial values 3:24, 26
local 3:14
saving 3:12
scratch 3: 14
signals 3: 14
relocation
global offset table 3:32
procedure linkage table 3: 32
see object file 4:3
resources, shared 3:19
return address 3: 16
return value
floating-point 3: 16
integer 3:14, 16
pointer 3:14, 16
structure and union 3:17
rts instruction 3:16-17

S

sbrk() 6:1
scalar types 3:1
scratch registers 3: 14
secondary storage 3:19
section, object file 5:1
segment
dynamic 3:20
permissions 5:2
process 3:19-20, 5:1,6
segment permissions 3: 21
setimp(BA LIB) 3:41
setrlimit(BA_0OS) 3:21
shared object file 3:32
segments 3:20, 5:4

Index

short 3:2
SIGBUS exception 3:23
SIGEMT exception 3:23
sign extension
arguments 3:14
bit-ficld 3:6
signof char 3:2
signal(BA 0OS) 3:14,23
signals 3: 14, 41
signed 3:2.6
SIGSEGV exception 3:23
single-precision 3:2, 15
sizeof 3:1-2
software installation 2:1
%sp (sce stack pointer)
stack
address 3:26
dynamic allocation 3: 41
initial process 3:26
3:19-20
system management 3: 21
3:12, 40
3:12, 41
3:11-=12, 39

process

stack frame
alignment
organization
size 3:12,40
stack pointer 3:13, 26, 34
<stdarg.h> 3:40
structure 3:3
function argument 3: 16
padding 3:3
return value 3:17
structures, functions returning — 3: 17

supervisor mode (see processor supervisor

modc)
switch code 3:38
switch statements 3: 37
SYSCOHf(BA 0OS) 3:19,29
system calls 6: 1

see also libsys 6: 1
system load 3:19

T

tape

QIC cartridge 2: 1

reel-to-reel 2:1
termination, process 3: 41
text

process 3:19

sharing 3:32
trace exception 3: 23
trap #2-15 exception 3: 23
trap instruction 3:22
traps (see exceptions)
traps, access exception 3: 20
tunable parameters

process size 3:19

stack size 3:21

U

undefined behavior 3:1,17, 26, 28, 5:2
see also ABI conformance 3: 1
see also unspecified property 3: 1

uninitialized data 5:2

union 3:3,5
function argument 3: 16
return value 3:17

unions, functions returning 3: 17

unlk instruction 3: 16-17

unsigned 3:2,6

unspecified property 3:1, 14, 16-17,

24-27, 5:1, 3
see also ABI conformance 3: 1
see also undefined behavior 3: 1

Motorola 68000 Family ABI SUPPLEMENT

user mode (see processor execution
mode)
User’s Manual 1:2

\Y

<varargs.h> 3:40
variable argument list - 3: 40
variables, automatic ~ 3: 40
virtual addressing 3:19, 32
bounds 3: 21
invalid 3:20
void functions 3: 16

Z

7L10
null pointer 3:2, 20
uninitialized data 5:2
virtual address 3: 20
zero fill 3:6

Index

Index

”?T:d .= '|'-.-_ et .:.l*ll - 'I."-"-. :.'.I- :'—I = :_1}' l"'l..:.r_r:-'-"l":rl o tf'._.:l
g E L P Nl e B T
R o M :'i:--'t'- e e S L P
I= tan - P | Stada T, A=l e e = o a1 . fo=t o= PR _—
I-.--Iﬂ::l-r '.-..:-. ".‘-.'- 0 - '.-'-'_I:'E\:'l_--_ ':_ i ri-'--_ [P l--'l?l'_'_il-ln__-"'l ._'.I"'l-
o o . [=T i
e T == S me neELD = EEL e eSS I N by ==
Fht -i.. .-r_l- i PICIL - T A S w I L I N] R L f
e '5'!;_':.'__..1 R T I PR ;:-{-t:._ gy =
I e N r k- T L o neiptag EOE L .
= '{ e el s ' R s LR z_-r-.-l.-l?: ._".-..'i_.'."‘.-_ﬂn'-':-:-'_ll-.-.
e . . ERCEH i N EH i i
T e T B TR i RN NS
TTREREIN D O TR LI CTL B _":'l--'l._..--l.- S e T -
L B A T it ST SR IR T et IS :-.-"'I._..‘- R
- - B L T i pl el . St i rIEERRT
= SrT T T T L U U= .a s

-,
I :
ok R R T L L
- . e T . LTI LR
R ..".__.-lg S I [e L I T C i IO -
S . ‘It B TR T st RS %= mas .:':-'. R R T B
.t . i |.“._::.. SERLTIL

PR . B PR . = - o ';_J' - i seale o o .t o
R T e TR R e
i T T I G L - 3 i
"I-'!-.rl.;"-:i_._ll-l:-:?'-.'_-' -:':_::":E-ﬁ"l'.r_.'- _-_._-_-.:'::_-_. — '-_'_ [-_.h;.'.___,.- o a'_;:":l' -
B e PR o P BE RR P TP N SOOI
R R S T S e ;_:='-'f¢'-fl
LT L LRI R e TR LTI Rl P - LT T L
o "'-:ﬁ'-—- . LR RkE =3 "k T T o et et
"":E,;-'E-.:._j' :"__l -IE_‘:__'-.'I_-. B '!'.-":':':-_'-::_-‘._::_\:-: _ r:.:.::-' 'I-' :-_-_E"_"'.' ._":-'__:_._ _"" "-;-:'."-_ﬂ_.'_a-"-.'- ﬂ
S R e S e e
e N -n .I.:' "-_:."'..li_.-;"' - N -5 = N

L - I.
:'-"'.'.I-'--'r-.'-l- Il-'-:-- TR = N & et N St
= =. - ! - '-_I =t 1 - I == I.l.) -t .
R T T e e i
_ . s et N T T - sy = s u i ,
I D I T e R e A e
:-..-'!. --..E-..:_....J.-.. -. |'1 -l-'-__lll_-.l:l _...Il_ CR=E -:_. - - l...:.I'
L HE S S R T L --.'.T? = -_-.'j- el
- - 1 = R LI - _:'l.._ 'l"g.q i i e |-.- .
l.'I = T - - - l-‘ i II.::. t.-l'-- N .,.'. ..'1.J -I.,. B n, =1 .:rl o=
S e R e Ry e A
I L LT - Mr i ey At RGeS ot
PR ATt 5_.'- Fa __=_'.5_§'"-'E ro - P S [R AR S .
e - .l.: - N R SR '|. = - - |£ '_I.. .-‘ a =g = L. .)
. ﬂ) Bl oo N . -'.' l.. '-l LS -: R N . .P' . _-.] e i
= i'-" |:“..:'_i.l'_" _'-.' I:':-.-. '."l:-' FE - .:'l'l: g R T .
. R - I,-|'—_--'I _Jll"? '-ﬂ-'-l:'.. -._---'_ -..-F.i-,"..... . S
; 1.;. I.-.:l-.' .'|.I.-_.f. ‘-'-I- :-_l.-.- = s - R -.‘. ': _-. - I.'__' ul d oy .
..-_'__':.-_-."-. R T S ["f S s e EEC I
. _::'_:'r.'l-? we= D l.-ﬂ" '-:_." i ! ._':.":-I S 'E' N S -‘;_""_ o LI
T T A TR SO PR e
E = - -.% B s, e L = et
TR L e 1 - - ar = — .':.Ir:l:l"' e T e
5|.|| - = _a-:' K "'*"'._".'-'_"'-:l_"-E.r - _l.._.:'u--.-:___-'_:!"-_ _.';__5|I'_;:
I =1 ':l'l.-:'-.""- A e R, | e 1':'."r"-"::-"'-"-: e
- = =g I'";"l- . T FE Sl =, aL e = e - . =W s s s
= - -._-E'-_.I- aim e |-__-.-::|:.-.¥. - EiE S '-'*'-_I N T
e = ol . T l__'_:-:-_ IE |_ :_k-_
I e b

]
=am S

=

o

[

i
:r.l'r" N
:l:;'l ."l"E :'_

SR

= . . I TR

g . 1. = -
i .I;:.' I.:-.ﬁll.'l_' -'.'-T- _r':l I 'll e | .:':_:l
. . - - - : ety - - -!
B =N T BRIl a o - o N . I.:.l ERE
o o= =t . Iap . - S : [-
- L= 'll.-l-_ 2 I:_.'-'l::' . N NI :.l-'i_. el . _E.'l:: :- = '::.: ".IE': i_‘ .
e T A A L B A I T L
. = = e I.._--l.-:_l_: i .-__-I.'-l :-__. :'-'E . e .l:.__.

17.MAI35 A 005615

HH-anlL

2205 81

e
Ry

