
3rd Debian Conference

System Init Scripts and the Debian O.S.

Henrique de Moraes Holschuh∗

June 2002†

Abstract

This paper describes the System V, OpenBSD /
FreeBSD, NetBSD and Debian 3.0 init script sys-
tems. Some new proposals made by third-parties
for init script systems are also described, with
emphasis on Richard Gooch's simpleinit sys-
tem. The system init script abstraction and policy
layer currently being deployed in Debian for the
release after 3.0 is described in detail. Changes to
that abstraction layer are proposed to allow for
dependency-based init script systems in Debian.

1 Linux System Bootstrap

System bootstrapping procedures vary quite a bit,
depending on which kernel is being used. With
the imminent addition of the BSD kernels to De-
bian, we can expect the bootstrap procedures to
vary even more in the near future1.
For Linux kernels, the bootstrapping sequence

depends on the existence of initrd images or com-
pressed RAM �le system images, and even remote
boot images. Debian uses at least three vari-
ants of Linux bootstrapping: initrd for our very
big includes-even-the-kitchen-sink-as-modules 2.4
kernel images; direct bootstrap for smaller 2.4
and 2.2 kernels, such as those normally created
by users of the kernel-package package; and com-
pressed RAM �le system for boot-�oppies and
CD/DVDROMs.

∗hmh@debian.org †This is revision 1.16 of this document,
commited in 2nd July 2002, 12:01:34. 1 The Debian
BSD e�ort will also introduce a new standard C library
(libc), so system bootstrapping is the least of our worries.

Regardless of the kernel and bootstrapping
method used, at the very end of a normal De-
bian bootstrapping process the kernel will have
mounted the real root �le system in read-only
mode for us, and then it will execute /sbin/init,
which will run with pid 1.
/sbin/init will then proceed to call the system

init scripts, which will do the dirty job of mount-
ing �le systems in read-write mode, loading mod-
ules, starting service daemons, and running a lo-
gin shell for the user.
In Debian, these init scripts live in /etc/init.d,

and take one or more command-line parameters.
The �rst parameter tells the init script which ac-
tion it should take: start the service, stop the
service, reload service con�guration and so on.
All other parameters are optional, and init-script-
dependent. The script will return exit status zero
if no errors occur, and non-zero otherwise.
This init script command line convention is part

of the System V init script architecture, which is
Debian's default. Init scripts following this com-
mand line convention and stored in /etc/init.d
will be called SysV-like init scripts2 in this paper.

2 Init Script Systems

2.1 System V

The System V init script system is quite power-
ful, and very adaptable due to its modular de-
sign, true to System V style. This is a very big
advantage over the original BSD-like init script

2 SysV is the short form for System V.

1

systems3. Given the displeasure many have for
some parts of the System V init script system,
this is a Very Good Thing, indeed: the modular
design makes it possible to �x what is bad, and
keep what works �ne.
The System V init script system is well under-

stood by most seasoned system administrators,
and well de�ned. It works mostly well with the
software packages concept, as long as they come
from the same vendor. However, it is also messy
and ungraceful, it is unintuitive, and it takes quite
a bit of maintenance to keep the init script exe-
cution sequence just right.
The init script system is composed

of three modules: /sbin/init (Sysvinit),
/etc/init.d/rc (/etc/rc?.d/* symbolic link
farms) and the SysV-like system init scripts
themselves (/etc/init.d/*).
It has a concept of di�erent system pro�les,

which are called runlevels. The runlevels are 0
(system halt); 1 (single-user mode); 2, 3, 4 and 5
(normal modes)4; 6 (reboot system); 7, 8 and 9
(normal but not normally used); and �S� (system
startup). Runlevel �S� is only used during system
startup and allow single-user mode login. What
the other runlevels are used for varies from vendor
to vendor, and sometimes even with the operating
system's version.

2.1.1 Sysvinit

Debian's default (and currently only) /sbin/init is
the Linux System V init. It is packaged and main-
tained both for Debian and upstream by Miquel
van Smoorenburg5. We shall call it Sysvinit.
Sysvinit has a large memory footprint6. On

an ia32 system, it takes about 1280 kibibytes7

of virtual space, and 480 kibibytes of RSS. That
amounts to �an itty-tiny bit� of memory in these
KDE/GNOME days, but it is hardly what you
would use for memory-starved embedded systems.

3 At least from the point of view of a distribution us-
ing a package-based system, anyway. 4 The runlevels
are normally used in additive mode. For example: run-
level 3 is runlevel 2 plus networking functions; runlevel
4 is runlevel 3 plus NFS and other remote services en-
abled; runlevel 5 is runlevel 4 plus a X11 display server.

5 miquels@cistron.nl 6 This is glibc's fault. Sysvinit
itself takes only 25 kibibytes. 7 A kibibyte is 1024 bytes

Sysvinit is a fully-featured init as far as these
things go. Sysvinit can:

• use a script to start every process it needs to
(/etc/initscript);

• deal with several system pro�les (runlevels),
and switch between them upon user com-
mand;

• execute a con�gurable script to run the sys-
tem startup setup (/etc/init.d/rcS);

• babysit processes (restart, kill, control fork
rate), with di�erent sets of processes for every
runlevel;

• execute scripts on SIGPWR, SIGINT and
kbrequest;

• re-execute itself without bothering the rest of
the system;

• execute in system maintenance mode. These
are single-user mode (runs only the system
startup scripts, and then run sulogin), and
emergency mode (only run sulogin);

• change the runlevel init script subsystem (one
can tell Sysvinit to run something other than
/etc/init.d/rc to execute runlevel changes);

• deal with Linux serial consoles.

Sysvinit currently cannot:

• deal directly with kernel ACLs8 (but patches
for Sysvinit to add such support, and patches
to the Linux kernel to work around Sysvinit's
limitations do exist).

The default ACL inheritable set9 is �empty�
in the mainline Linux Kernel (and also in De-
bian's). Sysvinit needs to change that, or
ACLs are e�ectively disabled without a ker-
nel patch. It should also be able to modify
the capability bound set10, so as to emulate
the securelevel feature of the BSDs.

8 ACL is the short form for Access Control Lists. It is a
�ne-grained permission control system, capable of limiting
even the superuser's access to the kernel. 9 Set of ACL
permissions available to children of the current process.

10 The capability bound set selects either superuser or
ACL-based access control for every possible ACL.

2

• directly control processes that change their
process group (as most daemons do);

Usually only the �rst limitation is of any im-
portance, as daemons are controlled through init
scripts instead of by Sysvinit. Debian will need
to address ACLs in a consistent way very soon:
we already have the standard Linux kernel ACLs
(that cannot be used by default due to Sysvinit's
lack of ACL knowledge), and SE Linux11 is com-
ing. We also have at least one ACL-aware �le
system (xfs).12. The BSD kernels also have ACL-
enabled extensions (Trusted BSD), which might
enter Debian one day.

2.1.2 Init scripts symbolic link farm

The System V init script system decides which
services are to be started or killed in a given
runlevel (or during a runlevel change) using the
/etc/init.d/rc script. This information is stored
by symbolic link farms in directories, one direc-
tory per runlevel. To �gure out if a service is sup-
posed to be started or stopped in a given runlevel,
one must inspect the correct link farm.
The S runlevel is special, for Sysvinit is con-

�gured to run /etc/init.d/rcS at system startup.
One should not try to switch to runlevel S directly,
as Sysvinit does not execute any init scripts for
runlevel S.
The symbolic link farms are stored in

/etc/rc?.d, where �?� stands for the runlevel. The
symbolic links are relative, and point to the sys-
tem init scripts in ../init.d/ (i.e. to /etc/init.d/).
The symbolic links are named with a starting

S or K letter, followed by two digits and by a
variable, non-zero number of letters13. Services
that should be started have symbolic links start-
ing with S. Services that should be stopped have
symbolic links starting with K. One can have both
an S and K symbolic link for the same service if
that service is to be restarted during the runlevel
change. The name after the digits is the name

11 Security Enhanced Linux: a Linux kernel with manda-
tory ACLs. 12 ACL-awareness is available for the ext2
and ext3 �le systems as well, as kernel patches. 13 Ex-
tended regexp (S|K)[0�9][0�9][a�zA�Z]+; Most implemen-
tations will accept just about anything after the two digits,
however.

of the init script in /etc/init.d that the symbolic
link points to14.
The symbolic links are processed in shell colla-

tion order (which will be the one for the C locale
if one is lucky). First all K scripts are run with
the stop argument, then all S scripts are run with
the start argument. Some /etc/init.d/rc scripts
are known to try to optimize this a bit, and will
not call a init script to start a service that should
have been started in the previous runlevel and
was not stopped in the current runlevel. Debian's
/etc/init.d/rc does just that.
One must make sure the scripts are numbered

in the correct order. Scripts with the same num-
ber are not guaranteed to always run in the same
deterministic order (due to locale collation rules,
for example).
Right now, Debian does not take all the care

that such a fragile ordering enforcement system
requires. Maintainers often select the wrong or-
dering numbers for their init scripts, and that will
only get �xed when someone notices it in her sys-
tem, and �le a bug. Also, the default order num-
ber of 20 has too many services.

2.1.3 System init scripts

The system init scripts are stored in /etc/init.d.
They are named after the service they control (or
after the package that contains the script, but
that's likely a Debian extension).
All scripts take at least one command line pa-

rameter. This parameter selects which action the
script should perform. The common actions are:
start, stop, restart, reload, force-reload, status.
Other actions are possible, and often used. How-
ever, only the start and stop actions must exist
(because they are the only ones the System V init
script system actually uses).
Debian and the Linux Standard Base (also

known as LSB) have further requirements for the
system init scripts. There is ongoing work to make
sure Debian's requirements are compatible with
the LSB ones, both to allow better interopera-
tion, and to be less confusing to end-users. This
work is currently stalled, waiting for Debian 3.0
�Woody� to be released.

14 Most implementations will just follow the link to �nd
the correct init script (such as Debian's).

3

The LSB de�nes a few exit codes, and requires
that start, stop, restart, force-reload, and status
be supported by all scripts, as well as that all er-
ror messages be printed to stderr and all status
messages to stdout. It also requires all init scripts
to be shell scripts[12]. LSB init scripts will proba-
bly be easy to convert to whatever system Debian
is using.
Debian policy has many more requirements re-

garding the init scripts, which can be found at
policy chapter 10.3.1. They are basically[14]:

• scripts ending in �.sh� are to be sourced dur-
ing system startup, instead of executed in a
subshell;

• actions start, stop, restart (de�ned to be
stop if running, then start), and force-reload
should be implemented. Implementing reload
is optional;

• init scripts must behave sensibly in a variety
of border conditions (which are then de�ned
and the desired behavior described in the pol-
icy document);

• con�guration variables used by the init
scripts should go in special shell-snippet �les
in /etc/default/*.

2.1.4 Alternate System V-like init script
system: �le-rc

Most of the System V init script system is actu-
ally quite good. Complaints are almost always
directed to the symbolic link farm in /etc/rc?.d,
which is hard to maintain and somewhat di�cult
to understand at �rst glance.
File-rc[9] takes advantage of the modularity of

the System V init script system to do away with
the symbolic link farm. The list of services that
should be started or stopped in each runlevel is
kept in a single /etc/debian/runlevel.conf �le, in
an easy-to-parse, tabular format. One can have
the full picture of the services in every runlevel
with a simple glance at the table.
It still keeps the annoying ordering problem of

System V's init script system, though.
File-rc is fully packaged, supported and in-

tegrated in Debian. The Debian maintainers

Tom Lees15, Martin Schulze16 and Roland
Rosenfeld17 built upon the initial work by
Winfried Trümper18, and have improved �le-
rc many times since.

2.2 FreeBSD and OpenBSD init script
systems

FreeBSD and OpenBSD have very similar, and
simple init script systems inherited from 4.4BSD.
Something good can be said about applying the
KISS principle19 to system initialization, but it
makes for a less interesting specimen to study.
/sbin/init runs /etc/rc, if told to go in multi-

user mode. Otherwise, it starts a single-user mode
shell. There is no concept of runlevels or system
pro�les, as far as /sbin/init is concerned. It can,
like Sysvinit, babysit processes. It can also run
an /etc/rc.shutdown script on system shutdown.
FreeBSD and OpenBSD /sbin/init can also set

the kernel security-level.
The system initscripts are all grouped up into

one or more shell scripts, often by functionality
(e.g. rc.network; rc.shutdown). There is no con-
cept of packaging modularity. These scripts are
sourced by the main /etc/rc script. OpenBSD
does not even attempt to have many rc.* scripts,
remaining true to the KISS principle. FreeBSD
throws �KISS� to the wind, and has many rc.*
scripts.

2.3 NetBSD init script system

Unlike the two other BSDs, NetBSD has a very
advanced init script system. It is arguably more
advanced than System V's in some parts, and it
shows interesting concepts that have been long
standing requests from more advanced Debian
users. The rationale and implementation details
of the system are well described in [5].
/sbin/init is mostly the same as in the other

BSDs. All the intelligence in NetBSD's init script
system is in the /sbin/rcorder script, called by
/etc/rc to de�ne the order the scripts should be
called.

15 tom@lpsg.demon.co.uk 16 joey@debian.org
17 roland@debian.org 18 winni@xpilot.org 19 Short
form for �keep it simple, stupid!�. Complex systems are
harder to maintain, and thus easier to break. Therefore,
one should avoid complexity where possible.

4

This is the configuration file for /etc/debian/runlevel.conf
#
#Format:
#<sort> <off> <on> <script>
05 - 0 /etc/init.d/halt
05 - 1 /etc/init.d/single
05 - 6 /etc/init.d/reboot
10 0,1,6 2,3,4,5 /etc/init.d/sysklogd
12 0,1,6 2,3,4,5 /etc/init.d/kerneld
[...]
89 0,1,6 2,3,4,5 /etc/init.d/cron
99 - 2,3,4,5 /etc/init.d/rmnologin
99 0,1,6 2,3,4,5 /etc/init.d/xdm

Figure 1: a �le-rc runlevel con�guration �le

rcorder uses special keywords in the system
init script �les (inserted inside shell comments)
to build a graph of the interdependencies of the
scripts. Then, it outputs the topologically ordered
graph20 to stdout. /sbin/rc simply goes through
this list and executes every script in it.
It works very much like Debian's packaging sys-

tem package dependencies without any version in-
formation. The keywords are: Require, Provide,
Before and Keyword. They declare facilities for
a given script, and the dependency information
on other facility (and therefore, on scripts that
declare that facility).
Circular dependencies are not allowed. The

boot process starts with the scripts that have no
facility requirements. Should any dependency fail
to be resolved, rcorder will abort with an non-zero
exit status, which will cause the boot process to
switch to single-user mode.
Common functions accessed by the init scripts

are placed in a /etc/rc.subr shell �le that all init
scripts source. NetBSD also introduced a new,
optional rcvar action that outputs all the con�g-
uration variables used by the init script.
The rcorder approach to ordering the init

scripts makes it rather hard to do any sort of par-
allel execution of the system init scripts. NetBSD
doesn't even attempt to do that. The information
needed for parallel execution is there, but it would
require a far di�erent implementation approach to
be used.
20 i.e. ordered such as to make sure all declared depen-
dencies are satis�ed.

2.4 runit

Gerrit Pape's21 runit[1] is written to work side-
to-side with Daniel J. Bernstein's22 daemon-
tools23. It could be thought of as �daemontools
init script system�. It is a simple, straightforward
init script system with three states (system init,
multi-user, system halt) that depends on daemon-
tools to do all the daemon servicing work.
runit's /sbin/init is even simpler than the

BSD's. It has a very small memory footprint. It
can be linked statically against dietlibc[10] for a
total virtual memory usage of 24 kibibytes and
RSS usage of 20 kibibytes in Linux ia32. How-
ever, should one take into account the memory
footprint of daemontools' svscanboot and svscan,
there is little memory economy when compared to
Sysvinit without daemontools.
runit's system init scripts work very much like

the ones in FreeBSD and OpenBSD, and are
packaging-unfriendly. There is no runlevel con-
cept at all.

2.5 Simpleinit

Richard Gooch24 has written much about the
subject of using dependency information, and par-
allel execution in system init scripts (his work is

21 pape@smarden.org 22 aka DJB, of qmail fame.
23 Daemontools, like most other DJBware, has an obnox-
ious license that is not compliant with the Debian Free
Software Guidelines. Its existence is, therefore, irrelevant
for Debian. 24 rgooch@atnf.csiro.au

5

detailed in [3]) to automatically start and stop
services in the correct order, very much like the
NetBSD rcorder concept. His work in�uenced the
development of at least two init script systems
(minit and jinit), in addition to Gooch's own
�simpleinit� system.

2.5.1 The need(8) concept

The strategy used by Gooch to implement
dependency information seems to have become
known as �the need(8) concept�. His approach
to the ordering problem is very di�erent from
NetBSD's: instead of building a dependency
graph, every init script tries to run the scripts it
depends on, using the need command. need sim-
ply ensures that every init script is run only once.
It is beautiful in its simplicity. Until you get to
shutdown sequences, and runlevel changes, that
is.
There is some functionality in NetBSD's

rcorder system that cannot be easily implemented
using the simplest form of the need(8) concept:
the before keyword, and reverting the startup
sequence to run the shutdown sequence. Such
functionality needs dependency information to be
known beforehand.
This issue can be solved for the shutdown se-

quence by storing part of the dependency infor-
mation when services are started, so that one can
perform rollbacks by calling the init scripts with
a stop action. Partial rollbacks are possible, and
a shutdown is just a total rollback, followed by a
call to shutdown.
The System V runlevel functionality can be im-

plemented using rollbacks, but it will be slightly
di�erent from the real thing, as moving between
runlevels might cause services to be stopped and
then started again needlessly.
There is also a provide command. It was added

on request of Wichert Akkerman, with Debian
in mind, even. Two services are not allowed to
provide the same service at the same time; the
second one to call provide will receive a failure
exit status, and must itself fail, then.
The need(8) concept allows for easy parallel ex-

ecution of scripts, if one makes need a synchro-
nization point (and deals with the stdout and
stderr from the init scripts to avoid the resulting
console mess). The need(8) concept also places no

requirement of the init scripts being shell scripts,
as anything that can exec need and provide will
work.

2.5.2 Simpleinit's implementation of the
need(8) concept

The simpleinit init script system is distributed in
the util-linux upstream package, but it is currently
absent from Debian's binary util-linux packages.
Its /sbin/init is similar to a runlevel-less Sysvinit,
but it appears not to handle the powerfail signals,
nor to be able to re-exec itself (which would be
useful during libc and simpleinit upgrades).
The simpleinit init script system replaces

/sbin/init, /sbin/shutdown and /sbin/initctl. It
also provides /sbin/need and /sbin/provide, which
are symbolic links to initctl. Con�guration goes in
/etc/inittab, which is close to the Sysvinit inittab
�le.
Simpleinit does handle something akin to the

runlevel concept during system initialization. It
supports di�erent init script sets, by selecting a
di�erent init script (or directory of scripts) based
on the �rst argument given in the command line.
Thus, you could have di�erent directories, one

for each runlevel, and symbolic links to the real
scripts in some other directory... but you would
just be resurrecting the dreaded System V sym-
bolic link farm, then.
It is much better to implement runlevels as de-

pendency chains, using a �runlevel.1� service for
example, and tell simpleinit to execute that script
on startup. This works very well for additive run-
levels.
A special startup/shutdown script is also sup-

ported, if con�gured in /etc/inittab. It is called
with a start argument during initial system
startup, after all terminal programs listed in
/etc/inittab are started, and with a stop argu-
ment at the start of the shutdown process.
Dependency tables are kept in memory by init

itself. /sbin/initctl talks to /sbin/init through a
named FIFO (/dev/initctl), and signals. To per-
form rollbacks, one calls /sbin/need with the -r
switch and the service up to which it should roll-
back.
/sbin/need simply requests the running

/sbin/init to start a service, or to rollback up

6

to a service. Init then forks, and executes the
needed service(s) with a start or stop action.

2.6 minit

Felix von Leitner's25 minit[2] is a small
/sbin/init, linked against dietlibc[10]. It has a
good set of features, and it includes its own
daemontools-like set of service managers, remov-
ing any dependencies on non-free software26. It is
service interdependency-based, just like NetBSD's
rcorder system. However, it is much less powerful
than rcorder, for it has only the concept of direct
dependencies. It seems to have been developed
loosely around the need(8) concept described in
section 2.5.1.
According to minit's documentation:

• it can start services and take dependencies
into account;

• it can restart services;

• it can start services in sync mode (i.e. wait
until they terminate);

• there is a companion utility msvc that
can be used much in the same way as
the svc from daemontools. Communication
works over two FIFOs: /etc/minit/in and
/etc/minit/out ;

• there is a companion utility pid�lehack that
can be used to run daemons that start their
own sessions and write the new pid to a �le
(OpenSSH, for example);

• it can pipe stdout to a dedicated log process.

minit uses directories under /etc/minit to lay out
information about the services it should control.
Special �les inside the directory set the service's
characteristics:

depends: contains the names of services that
must have been started before this service
does. One name per line.

run: absolute symbolic link to the name of the
program that should be executed for this ser-
vice.

25 web@fefe.de 26 Software non-compliant with the De-
bian Free Software Guidelines.

params: command line parameters (no shell ex-
pansion is done) to feed to the service. One
parameter per line.

respawn: if this �le exists, the service is
respawned if it dies. This behavior is mu-
tually exclusive to �sync�.

sync: if this �le exists, minit will wait until the
service returns before proceeding with the
next service. This behavior is mutually ex-
clusive to �respawn�.

log: if this directory exists, minit will treat it as
a separate service, and its stdin is connected
to the stdout of the parent service.

2.7 jinit

John Fremlin's27 jinit[7] is an init script system
based on the need(8) concept (see section 2.5.1),
although it currently lacks provide functionality.
Unlike all other init implementations I know of, it
is written in C++28.
According to jinit's documentation:

• it has complete service start and stop (roll-
back) support with dependency tracking.
Stopping a service will cause all services de-
pending on it to be stopped also;

• it can be told to respawn a command with-
out editing inittab or ttys, through the need
command;

• it communicates over System V message
queues, so it does not need to touch a �lesys-
tem when it comes up;

• it will kill all processes and force umount
�lesystems automatically on shutdown;

• if it receives a fatal error signal, such as
SIGSEGV, it will fork a child to dump core,
and exec itself again to keep on working.

The following disadvantages are also listed:

• jinit is currently not very tested, and it is
probably buggy;

27 vii@penguinpowered.com 28 Which is not a good
thing, as far as binary size goes. There is no dietlibc++,
after all.

7

• it does not use a traditional (System V) init-
tab or (BSD) ttys con�guration �le;

• it cannot dump state to and exec a later ver-
sion of itself, so state will be lost between
upgrades;

• it cannot handle all events Sysvinit can (such
as powerfail);

• jinit is bigger and more complex than other
inits.

2.8 Busybox

Busybox[8] tries to be the Swiss Army Knife of
embedded Linux, and as such it can also behave
as a simple /sbin/init.
Busybox has no concept of runlevels, but it will

parse the standard Sysvinit /etc/inittab �le (and
promptly ignore all runlevel information in there).
It supports the following Sysvinit actions: sysinit,
respawn, ask�rst, wait, once, restart, ctrlaltdel,
and shutdown, which is quite a lot, actually. It
does not have respawn throttle control.
Busybox /sbin/init can deal with serial con-

soles, and it is very suited for small boot-�oppies
and for bootstrapping installation systems.

2.9 twsinit

twsinit[4] is a very minimal init system. It con-
cerns itself with doing the bare minimum required
to get a system up and running, and it can take
as little as 8192 bytes of virtual memory and RSS.
twsinit is capable of running a single startup

script, and of respawning services. It has no con-
cept of respawn throttle control, and one can as-
sume that most other traditional /sbin/init capa-
bilities are also outside of its intended scope.

2.10 Serel

Leni Mayo's29 Serel[11] aims at reducing the
time the system spends booting. In order
to achieve that objective, Serel implements30 a
dependency-based init script system capable of
parallel execution. To deal with the dependen-
cies, it implements the basic need(8) concept.

29 leni@moniker.net 30 Serel version 0.3.2 was the cur-
rent release when this paper was written.

It is interesting to note it implements depen-
dency both statically (it has to, in order to op-
timize the dependency tree for fastest boot) and
dynamically. It is currently tailored to work out
of the box with RedHat 7 systems.
Serel also has tools to analyze the time every

init script takes to boot (which is logged31 by
Serel during bootstrap), and attempts to create
an optimal execution path for the next boot.
Serel does not change /sbin/init. It is executed

by init, and spawns a daemon which controls the
boot process. It then runs the init scripts in the
order it was con�gured to by the optimization
tools (if such information is available), to try to
achieve the minimum bootstrapping time possi-
ble. Otherwise, it uses the dependency informa-
tion to simply run as much stu� in parallel as
possible.
The init scripts use an external command

(/sbin/serelc) to communicate with the daemon,
to tell it about their dependencies dynamically.
Serel supports provide, and need dependencies.
It does not support before dependencies.
Serel can also read dependency information

stored in the LSB format (see section 3.1), and in
its own XML/RDF[17]-based format. The RDF
�les can be visualized in a graphical view, as
shown in �gure 2.

3 Linux Standard Base Init

Scripts

The Linux Standard Base also has something to
say about system init scripts[12]. It de�nes the
following actions:

start: start the service.

stop: stop the service.

restart: stop and restart the service if the service
is already running, otherwise start the ser-
vice.

reload: cause the con�guration of the service to
be reloaded without actually stopping and
restarting the service.

31 Such logging is a feature I would like to see in other init
script systems. As well as logging the output of the init
script themselves, of course.

8

Figure 2: Serel dependency graph visualization

force-reload: cause the con�guration to be
reloaded if the service supports this and it
is running. Otherwise, restart the service.

status: print the current status of the service.

These de�nitions are completely compatible with
the de�nitions in Debian policy[14]. Actions start,
stop, restart and force-reload are required to be
supported by all init scripts, both in the LSB and
by Debian policy.
The LSB requires status32 to be supported by

all init scripts, while Debian policy doesn't. It
also provides a bunch of shell helper functions
in /lib/lsb/init-functions that init scripts are sup-
posed to (but not forced to) use.
It has a few other requirements, which are also

in Debian policy:

• init scripts must ensure that they will behave
sensibly if invoked with action start when the
service is already running, or with stop when
it isn't;

• if a service reloads its con�guration automat-
ically (as in the case of cron, for example),
the reload option of the init script must be-
have as if the con�guration has been reloaded
successfully.

And a few requirements that are not in Debian
policy, but should be:

• since an init script may be run manually by a
system administrator with non-standard en-
vironment variable values for PATH , USER,

32 which isn't easy to implement correctly, and not very
useful.

Status Description

0 Action successful. Also, starting
an already-running service, and
stopping a service that is not run-
ning

1 Generic or unspeci�ed error
2 Syntax error
3 Unimplemented feature
4 User has insu�cient privilege
5 Service is not installed
6 Service is not con�gured
7 Service is not running

8�99 Reserved for future LSB use
100�149 Reserved for distribution use
150�199 Reserved for application use
200�254 Reserved

Table 1: LSB init script exit status codes

LOGNAME, etc. init scripts must not de-
pend on the values of these environment
variables. They should set them to some
known/default values if they are needed;

• all error messages must be printed on stderr.
All status messages must be printed on std-
out.

The LSB de�nes the exit status codes for init
scripts, as listed on table 1. Exit status 5 (�ser-
vice is not installed�) is incompatible with Debian
policy. Debian practice is to return exit status
0 without doing anything, when a package is re-
moved but not purged from the system.
The invoke-rc.d interface was engineered to be

compatible with the LSB speci�cation.

9

Status Description

0 Service is running, and ok
1 Service is dead, and /var/run

pid�le still exists
2 Service is dead, and /var/lock �le

still exists
3 Service is stopped
4 Service status unknown

5�99 Reserved for future LSB use
100�149 Reserved for distribution use
150�199 Reserved for application use
200�254 Reserved

Table 2: LSB exit status codes for status

The LSB de�nes the exit status codes for the
status action, summarized in table 2.
Debian policy doesn't say anything about the

exit status for init scripts.
The LSB has also de�nes the runlevels: run-

levels 0, 1 and 6 follow the System V runlevels
(system halt, single-user and system reboot); run-
level 2 is �multiuser with no network services ex-
ported�; runlevel 3 is �normal, full multiuser�; run-
level 4 is �reserved for local use�, and defaults to
be the same as runlevel 3; and runlevel 5 is �mul-
tiuser with X11 display manager�.
It also de�nes that the init script ids are in a

single namespace (that includes the init scripts of
the O.S. distribution), and that one should regis-
ter init script ids, including the distribution ones,
with LANANA[13].
Why this was done in such an intrusive way,

instead of requesting a well-de�ned namespace for
LSB init scripts (such as �vendor-*�, or �lsb-*�), is
beyond me. The LANANA pages have no mention
of the init script namespace registry anywhere; so
far, it looks like nobody is really paying attention
to this part of the LSB33.

3.1 LSB facilities for dependency-based
init script systems

The LSB provides rudimentary support for
dependency-based init script systems. It does not
propose any such a system, though.
This support is composed of: comments in the

init script themselves, that convey the depen-

33 which is a good thing, as far as Debian is concerned.

Facility Description

$local_fs all local �lesystems are mounted.
Note that /usr and other �lesys-
tems might be remote

$network low level networking is opera-
tional

$named daemons which may provide
hostname resolution (if present)
are running

$portmap daemons providing Sun-
RPC/ONCRPC portmapping
service (if present) are running

$remote_fs all remote �lesystems are
mounted

$syslog system logger is operational
$time the system time has been set

Table 3: LSB boot time facilities

dency information; and a set of standard facilities
that the init scripts may depend upon. The stan-
dard system facilities are listed in table 3. Init
scripts providing other facilities should use their
id for the facility name, without the leading �$�.
The comments are supposed to convey all extra

information an init script might need to provide
to other automated tools of the init script system.
They have the serious inconvenience of forcing all
init scripts to be shell scripts.
Their format is the shell comment character

�#�, a blank space, and the keyword, followed by
colons, a space, and the value.
The comments must be delimited in the script

by the lines �### BEGIN INIT INFO� and �###
END INIT INFO�. Distributions may de�ne addi-
tional keywords pre�xed by �X-� followed by the
distribution name, such as �# X-Debian-xyzzy�.
The keywords de�ned in LSB for dependency

tracking are:

Provides: space delimited list of facilities pro-
vided by this service;

Required-Start: space delimited list of facilities
required by this service to be active before it
can be started;

Required-Stop: space delimited list of facilities
required by this service to be active for it to
successfully shutdown itself;

10

Should-Start: space delimited list of facilities
that should be started if at all possible, be-
fore this service is started (suggested by LSB,
not normative);

Should-Stop: space delimited list of facilities
that should still be active when this service
is shutdown (suggested by LSB, not norma-
tive).

Unfortunately, this approach is useless for dy-
namic dependency schemes such as the need(8)
concept. We could build on them, though.

3.2 LSB Init Script functions

The LSB includes a library of POSIX.2 shell script
functions, accessed by sourcing /lib/lsb/init-
functions. The functions can be provided as ex-
ternal commands, made available to the init script
after sourcing the init-functions script. All LSB
init scripts are supposed to source that �le.
The full list of functions is summarized in table

4.

4 The Debian Init Script

Subsystem

We have had an intermediate abstraction layer in
Debian to access part of the system init script
systems for a very long time.
Manipulation of the symbolic link farm of the

System V init script system is tedious to code,
and prone to error. Any Debian package installing
a system init script would have to duplicate this
code in its maintainer scripts34. Thus update-rc.d
was born, long before it was needed for its ab-
straction capabilities.
/usr/sbin/update-rc.d is used to register a

Sysvinit-like system init script with the underly-
ing init script system. In a normal System V init
script-based Debian system, that means adding to
or removing symbolic links from the correct run-
level symbolic link farm.
34 There are �ve maintainer scripts in deb packages: con-
�g, preinst, prerm, postinst and postrm. The post* scripts
run after package installation and removal. The pre*
scripts are run before installation and removal. The con-
�g script is run by debconf sometime before the postinst
script (it may be run even before the preinst script), if it
exists.

start_daemon [-f] [-n nicelevel] pathname [args]

This runs the speci�ed program as a daemon.
start_daemon will check to see if there is a
program with the same name as the daemon
already running. If so, it will not start an-
other copy of the daemon unless the �f option
is given. The �n option speci�es a nice level.
See nice(1).

killproc basename [signal]

This stops the speci�ed program. The pro-
gram is found using the algorithm given by
pidofproc. If a signal is speci�ed, the program
is sent that signal. Otherwise, a SIGTERM
followed by a SIGKILL after some number
of seconds is sent.

pidofproc basename

This function returns one or more pid(s) for
a particular daemon. If an entry is found in
/var/run/basename.pid, then that value is re-
turned. For security reasons, LSB-compliant
applications who wish to use the pidofproc
function in their init scripts must store the
pid in /var/run/basename.pid.

log_success_msg �message�

This requests the distribution to print a suc-
cess message. The message should be rela-
tively short; no more than 60 characters is
highly desirable.

log_failure_msg �message�

This requests the distribution to print a fail-
ure message. The message should be rela-
tively short; no more than 60 characters is
highly desirable.

log_warning_msg �message�

This requests the distribution to print a
warning message. The message should be rel-
atively short; no more than 60 characters is
highly desirable.

Table 4: LSB shell function library for init scripts

11

When the �le-rc SysV-like init script system en-
tered Debian, update-rc.d was already there, and
all maintainer scripts used it to register their sys-
tem init scripts. So, it was a simple matter of
adding a �le-rc version of update-rc.d and every-
thing kept working.
The init script system abstraction layer was in-

complete, though. Maintainer scripts still had to
directly call the system init scripts to start or stop
the services during package install, removal and
upgrade. At the time update-rc.d was added to
the distribution, running the init scripts directly
did not appear to have any major drawbacks. Or
at least not enough of them to justify the added
work of creating and deploying a complete ab-
straction layer: this happened way back in 1996,
and Debian was quite small in those days.
But there are two major drawbacks to main-

tainer scripts running the system init scripts di-
rectly, in fact: services would be started auto-
matically in package install and upgrades, even if
the service should never have been started in that
runlevel. And Debian could not move away from
SysV-like init scripts stored in /etc/init.d without
�xing a big number of packages.
A �x for those problems is being deployed right

now[15]. Two new scripts were added to Debian
3.0 Woody: invoke-rc.d and policy-rc.d. Their
usage will become mandatory35 after Woody is
o�cially out, so that the new abstraction layer is
fully deployed when the next Debian stable release
after Woody is done.

4.1 update-rc.d, invoke-rc.d and
policy-rc.d

There are two big sets of init script users in De-
bian: the system administrator herself, and main-
tainer scripts run by dpkg. The system admin-
istrator is supposed to know what she's doing;
maintainer scripts, however, have a knack to start
or stop services when they shouldn't.

35 This will be done in the usual hacker-friendly way:
A should clause in Debian policy, along with many bug
reports, with apply-and-upload patches attached to add
the required functionality in all packages a�ected by the
change. When 90% of the packages have been converted to
the new system, the Debian policy clause will be changed
to a must.

This is particularly bad during system up-
grades, or when installing packages inside a ch-
root jail. The maintainer scripts can mess around
with the services no matter what the system ad-
ministrator con�gured the init script system to
do.
Requests for a way to keep uncon�gured (as

in not con�gured by the local system administra-
tor yet) services from starting during �rst-time
package installs are common in the Debian mail-
inglists, too. Many people seem to consider such
behavior an unacceptable security risk, appar-
ently.
To improve the init script abstraction layer,

and empower the local system administrator to
fully control how services are manipulated by the
packages' maintainer scripts, the new invoke-rc.d
script was introduced. Maintainer scripts are ex-
pected to use invoke-rc.d to start, stop, and oth-
erwise manipulate system services.
invoke-rc.d can refuse to execute an action re-

quested by a maintainer script. It will, for ex-
ample, refuse to start or restart a service if that
service should not be running in the current run-
level when the System V init script system is being
used. It will also try to execute /usr/sbin/policy-
rc.d if it exists, and carry out the request as mod-
i�ed by policy-rc.d.
policy-rc.d is an optional program that enforces

whatever system initscript policy the local system
administrator might want. It can refuse action
requests from invoke-rc.d, and it can also modify
any such request to another one (e.g, you could
change all restart action requests to stop) or to a
group of requests which will be tried one by one
until a request succeeds.

4.1.1 update-rc.d interface

update-rc.d registers an init script with the init
script subsystem. It has to be called previous to
any invoke-rc.d and policy-rc.d calls. While this
is not currently done (or at least not enforced or
checked for), the init script itself should not be
executed before it is registered by update-rc.d.
The complete interface is described in the

update-rc.d(8) manpage.
update-rc.d provides the following functional-

ity:

12

1. update-rc.d [�n] [�f] id remove

Unregisters the system init script id.

2. update-rc.d [�n] id defaults [n1 [n2]]

Register, or update the registry information
for, the system init script in the default run-
level, with ordering number n1. If n2 is speci-
�ed, n1 is used for the start ordering number,
and n2 for the stop ordering number. The
default ordering number is 20.

3. update-rc.d [�n] id start|stop n1 runlevel run-
level start|stop n1 runlevel runlevel ...
. ...

Register, or update the registry information
for, the system init script in the speci�ed run-
levels, with ordering number n1, and spec-
i�ed action (start or stop). The supported
runlevels are: 0�9 and S (system startup).

update-rc.d is supposed to behave in a
administrator-friendly way. It will try to
detect when local changes were made to that
init script's runlevel information, and will not
override them. For the System V link farm, this
means that as long as any link exists for that
service, in any runlevel, and the links do not
match the last registered state, they will not be
updated.
update-rc.d(8) lists the following as a bug:

�There should be a way for the system admin-
istrator to specify at least the default start and
stop runlevels to be used by defaults and possibly
to override other things as well.�
update-rc.d returns exit status zero if the op-

eration is carried out, and non-zero if an error
happens.

4.1.2 invoke-rc.d interface

invoke-rc.d executes a system init script, subject
to whatever init script policy is active. It should
be used for all interactions of a maintainer script
with a system init script36. invoke-rc.d enforces
only very basic policies by itself: it blocks at-
tempts to start a service if the system is currently

36 Note that the init script system itself does not use in-
voke-rc.d ever. The user shouldn't, either.

in a runlevel where the service would not be ac-
tive. It relies on policy-rc.d to implement more
complex policies.
The complete interface for invoke-rc.d is de-

scribed in the invoke-rc.d(8) manpage, and also
with a bit more detail in [16]. invoke-rc.d is pro-
vided by the Sysvinit and �le-rc packages.
invoke-rc.d provides the following functionality:

1. invoke-rc.d [�force] [�disclose-deny] [�no-
fallback] id action [init script parame-
ters...]

Executes the system initscript id, requesting
the given action. Parameters after action are
sent to the init script. If execution is denied
by the init script policy layer, invoke-rc.d will
return a zero exit status unless �disclose-deny
is speci�ed.

2. invoke-rc.d �query [�disclose-deny] id action
[init script parameters...]

Returns exit status codes describing what
would happen, but does not execute the init
script. This allows one to know, for example,
if the init script is registered; or if an init
script would be started in the current run-
level.

Should an init script be executed, invoke-rc.d al-
ways returns the status code returned by the init
script.
Init scripts should not return status codes in

the 100+ range (which is reserved in Debian and
by the LSB).
The status codes returned by invoke-rc.d

proper are summarized in table 5. Exit status
104, 105 and 106 are only returned when in �query
mode.

4.1.3 policy-rc.d interface

policy-rc.d is responsible for init script policy de-
cisions. It arbitrates when invoke-rc.d should ex-
ecute an action using a service init script, and
how. This script is optional, and it will likely not
be present on most Debian systems.
The complete interface for policy-rc.d is de-

scribed in the policy-rc.d(8) manpage37, and in
[16].

37 This manpage has not been written yet.

13

Status Description

0 Success: Either the init script was
run and returned exit status 0, or
it was not run because of run-
level/local policy constrains and �
disclose-deny is not in e�ect.

1�99 Reserved for the init script, usually
indicates a failure

100 Init script id unknown
101 Action not allowed: The requested

action was denied
102 Subsystem error: init script subsys-

tem malfunction
103 Syntax error
104 Action allowed: init script would be

run
105 Behaviour uncertain
106 Fallback action requested

Table 5: invoke-rc.d exit status codes

policy-rc.d has more capabilities than just ap-
proving or denying a certain action. It is pos-
sible to execute one or more actions, instead of
the action initially requested to invoke-rc.d. This
is known in the invoke-rc.d and policy-rc.d docu-
mentation as a fallback action.
Should policy-rc.d reply to invoke-rc.d that a

list of actions is to be used as a fallback action,
instead of a single action, they will be executed in
FIFO sequence, until one of them succeeds.
policy-rc.d provides the following functionality:

1. policy-rc.d [�quiet] �list id [runlevel ...]

List, in a format friendly for parsing by hu-
mans, all policies de�ned for init script id,
for the speci�ed runlevels. If no runlevels are
speci�ed, list policies for all runlevels. All
known actions and their fallback actions for
the init script id.

2. policy-rc.d [�quiet] id list-of-actions
[runlevel]

Verify policy for the space-separated list of
actions list-of-actions (the list must be sent
as a single parameter to policy-rc.d), and the
speci�ed runlevel. Should the runlevel not be
speci�ed, it will be considered unknown.

Status Description

0 Action allowed
1 unknown action, therefore unde�ned

policy
100 Init script id unknown
101 Action forbidden
102 Subsystem error: init script subsys-

tem malfunction
103 Syntax error
104 reserved, do not use
105 Behaviour uncertain, unde�ned pol-

icy
106 Action forbidden. Use the returned

fallback actions instead

Table 6: policy-rc.d exit status codes

The exit status codes policy-rc.d should return are
summarized in table 6.

stdin: not to be used by policy-rc.d.

stdout: used to return �list output, or to output
a single line containing a space-separated list
of fallback actions.

stderr: used to output error messages.

5 What remains to be done in

Debian

Debian does not have an /sbin/init abstrac-
tion layer. However, proper implementation of
/sbin/telinit would work just as �ne as an extra
wrapper would, and very few packages try to talk
to init anyway (glibc tries to restart init when the
libc is upgraded, but that's about it).
Con�guration packages that touch /etc/inittab

might cause grief, too. But there is little that
can be done about that, other than not using
/etc/inittab for the init con�g �le if the syntax
changes too much.
We also have no init script logging, and the init

script output is loosely standardized in Debian
policy38. The former is something we should ad-
dress soon, maybe even in our implementation of

38 It is better to have it loosely standardized than to have
a strict standard nobody cares about, but we don't enforce
even stdout/stderr consistency, which is bad.

14

the System V init script system, and certainly in
any new systems we deploy. The later is some-
thing that should wait until proper logging is im-
plemented, when it will make a bigger di�erence39

to have consistent output.

5.1 Debian Init Script Registry

There is one thing Debian should do as soon as
possible: a registry of init scripts. The main rea-
son for such a registry would be to make sure that
the System V ordering is always sane, but it would
also have some extra bene�ts: we would know
the packages that have init scripts at a glance;
and we could register the init script names with
LANANA should that become necessary.
Such registry could be implemented as a simple,

machine-readable text �le, shipped in a very small
package with little else. The Debian bug-tracking
system could be used to request changes in the
database. An aggressive 2-day NMU40 policy (or
a big set of uploader maintainers, which amounts
to the same) for this package would be enough to
keep it current.
Debian policy would be changed to require all

packages providing system init scripts to regis-
ter them with the init script database, after all
such packages currently in Debian are added to
the database as an initial set.
The database probably needs to track the state

of a package in both the stable and unstable distri-
butions, to help quality assurance, and bug �xing.
Lintian41 and Linda42 warnings should be

added also, to remind maintainers that their init
scripts are not in the database yet (and to help
track down typos).

5.2 Minimum command line interface
speci�cation: /sbin/init, /sbin/telinit

We need to de�ne a minimum subset of Sysvinit
/sbin/telinit 's command line interface that any
new /sbin/init must implement.
Either that, or we will need an abstraction layer

to deal with /sbin/init. It is probably better to

39 Which is to say: �when we will have more chances
to get maintainers to actually �x the damn things�.
40 Non-Maintainer Upload. 41 Lintian is an automated
tool used to verify common mistakes in Debian packages.
42 An ongoing rewrite of Lintian in Python.

just de�ne a compatibility set for /sbin/init and
/sbin/telinit, much in the same way as it is done
for /usr/sbin/sendmail :

1. /sbin/init runlevel

/sbin/telinit runlevel

Switches to the speci�ed runlevel for
runlevel-based init script systems. Starts the
runlevel-named facility for dependency-based
init script systems.

During system bootstrap, /sbin/init may be
executed by the kernel with the auto keyword
appended to the command line, with or with-
out a runlevel. It must be able to deal with
that situation gracefully.

2. /sbin/telinit [�t seconds] [u|U] [q|Q]

The �t option sets the time that /sbin/init
should wait between sending processes the
SIGTERM and SIGKILL signals. It is ig-
nored if /sbin/init has no such capability.

The fake runlevel �u� (or �U�) tells /sbin/init
to re-execute itself. This functionality is re-
quired, and it must not cause init to lose
state.

The fake runlevel �q� (or �Q�) tells /sbin/init
to reload its con�guration. This functional-
ity is optional, but if it is not implemented,
telinit must ignore it instead of returning an
error.

5.3 Logging, and uniform output

Init scripts are either managed directly by
/sbin/init, or by an special script. There is lit-
tle reason for why we could not log their stan-
dard output (stdout) and standard error (stderr)
streams to a ring-bu�er during early system boot-
strap, and dump that to a log �le later43.
Any new, non-minimal init script system should

attempt to do proper logging of the init scripts'
output. And this output should be made concise,
clear in its intent, and as uniform as possible.
All normal init script output should be sent to

stdout. All error output should be sent to stderr.
The service must not pollute44 the console. All
43 Other than the fact that nobody has taken the time to
write the code to do so, thus far. 44 Pollute as in �write
to, or read directly from�.

15

output must be to the stdout or stderr pipes.
Once the init script �nishes its run, these pipes
will be closed. The service (which might be a dae-
mon) must be able to cope with that gracefully45.

5.4 Extending the abstraction layer for
dependency-based systems

Adding a new, dependency-capable, parallel-
execution-capable init script system to Debian is
an interesting challenge. Deploying such a system
will require a few updates in the current init script
system abstraction layer, however.
Such changes are needed so that we can add

support for generic, dependency-based systems.
Once they are in place, Debian will be able to host
di�erent dependency-based systems as well as our
current capability of hosting di�erent numerical-
order-based init script systems.
The following improvements to Debian need to

be deployed to support dependency-based systems
correctly:

1. Some runlevels will have to be removed from
the abstraction layer, or to be made optional.

In dependency-based init script systems, run-
levels are not needed and often not desired.
It is much easier to simply use dependencies
to create as many di�erent named sets of init
scripts as one wants.

As far as current Debian policy is concerned,
runlevels are already reduced to: system
startup (S), single-user (1), multi-user (2�5),
and shutdown (6). It is up to the local sys-
tem administrator to customize runlevels 2�5
to his preferences.

It is useful to retain these four sets of init
scripts, but we should make sure developers
are not mislead into thinking they are actu-
ally allowed to have Debian packages trying
to use runlevels with more granularity than
the four sets above. One easy way to do that
is to change update-rc.d so that only the four-
runlevel set is supported for Debian packages.

45 A properly coded daemon must do the following: Close
�le descriptors 0�2 (stdin, stdout, stderr), start another
session group to detach from the controlling terminal, and
fork. Broken ones must be �xed, or worked around using
start-stop-daemon.

It is important to note that the limitation in
the number and type of runlevels allowed for
manipulation in Debian maintainer scripts
must not impact the local system adminis-
trator. If an init script system allows for the
System V runlevels, those must be fully avail-
able for customization by the local system ad-
ministrator. If an init script system supports
unlimited named runlevels, those too must be
fully available for customization by the local
system administrator.

Whether we want the full runlevel set to be
available through update-rc.d to local admin-
istrators, or not, is the important question.
Missuse of update-rc.d by users is a known
problem46.

2. The system startup and shutdown runlevels
should be uni�ed.

The current split system (runlevels S, 0 and
6) we have is �ne, and it will work well as
long as the new init script systems special-
case system shutdowns and system startup.

However, the split system is not as clean
as, nor as simple to understand as an uni-
�ed system initialization, where the start ac-
tion sent to the system initialization scripts
during system startup, and the stop action
is sent during system shutdown. We would
drop runlevels 0 and 6 from the abstraction
layer, then.

Given the already confusing state of a�airs
regarding the start and stop actions in run-
levels 0 and 647, it is arguable that the change
is a price worth paying. We simply will
not have any S scripts receiving stop ac-
tions in the shutdown runlevels anymore, so
it won't be terribly confusing to people used
to Sysvinit, anyway.

46 The local administrator should deal directly with the
init script system, and not go through Debian's abstraction
layer. Otherwise, his changes may be lost. 47 Scripts
that stop services must be registered as K (stop) scripts,
while functionality exclusive to runlevels 0 and 6 must
be registered as S (start) scripts, in System V init script
speech. The S scripts on runlevels 0 and 6 will be executed
with the stop action, which is misleading at best.

16

The system init scripts would use an environ-
ment variable to di�erentiate system reboot
from system shutdown.

3. There needs to be a registry of virtual fa-
cilities, just like the one we have for virtual
packages.

This registry would be yet another small text
�le inside the package containing the init
script registry.

4. A new init script action de�ned to be �restart
only if the service is currently active� is
needed48.

Without such functionality, it is very dif-
�cult, if not impossible, to implement dy-
namic dependencies where restarting a ser-
vice causes a few others to be restarted. Such
functionality is desired for the syslog service,
for example.

5. We will have to extend the update-rc.d inter-
face (or create a new one) to support static
dependencies in init script systems.

We need some way to store the new depen-
dency information for init script systems with
static dependencies. There are a number of
alternatives, such as:

a) Store it in �le fragments, inside an
/etc/init.d -like directory;

b) Store it inside the init script itself, as
comments (see sections 2.3 and 3 for sys-
tems that use this);

c) Store it inside the init script itself, as
a call to an external command (be it a
new update-rc.d interface, or something
else);

d) Store it at package installation time,
just like it is done for update-rc.d in
Sysvinit.

My personal preference goes to alternative
5c. It keeps the information inside the init
script itself, an easy place for the user to look
it up and modify it, while at the same time
not limiting the comment syntax for the init

48 A possible name for this action is restart-if-running.

script (i.e. one can still have init scripts in
any language allowed by Debian policy).

6. The trigger for executing S and K init scripts
could change.

In Sysvinit, these init scripts are executed
when a runlevel is entered. It is likely that
for dependency-based systems, S init scripts
would be executed when a runlevel is entered,
and K init scripts when exiting the runlevel.

This is not a huge problem, but care needs to
be taken to properly document such changes
in behavior since they are likely to break
custom-made runlevel con�gurations done by
the local system administrator.

Any init script system to be hosted in Debian
would need to implement the following prerequi-
sites:

1. SysV init-like init script interface, accessible
through invoke-rc.d ;

2. Sysvinit-like subset of the telinit and init in-
terface, as described in section 5.2;

3. Full implementation of the entire Debian init
script abstraction layer.

It is possible to keep the System V full runlevel
set, but we would probably bene�t from simpler
systems without them.

5.4.1 Standard interface

To avoid namespace pollution, it would be bet-
ter to avoid general use names such as �need�,
and �provide� for the init script system functions
and executables. Also, we should de�ne a super-
set of the interfaces needed by the various possi-
ble dependency-based and non-dependency-based
SysV init-like systems.
The /usr/sbin/update-rc.d interface needs to

have its behavior de�ned for non-order-based sys-
tems as well. Dependency-based systems should
use the order information provided by update-rc.d
to enforce strict ordering on legacy init scripts, or
it must use package con�icts to avoid problems
with legacy init script packages.
The standard interface to communicate depen-

dency information to the init script system needs

17

to be done through external commands instead of
shell functions, so that we support non-shell init
scripts in systems that support dynamic con�gu-
ration of dependencies.
A proposal for such an interface is described in

table 7. An init script may assume a dependency-
based system is available if /sbin/init-after exists,
and it is executable. Otherwise, the init script
must either assume that an order-based system
(such as the standard System V init script system)
is being used (and all dependencies are already
satis�ed at runtime), or it must refuse to work,
reporting exit status 102 (�init script subsystem
malfunction�).
Init script con�icts and dependency failures

must not be allowed to happen, and the pack-
aging system dependency system is to be used to
guarantee that. Init scripts must be written in a
defensive coding style, and do all the proper error
checking.
Dependency-based init script systems should

refuse to start any init scripts that it cannot
guarantee the dependencies requirements for. It
should halt system initialization and rollback to
either single-user mode or to an emergency mode
(if single-user mode cannot be reached for some
reason), using /sbin/sulogin to allow the local sys-
tem administrator to �x any problems.
The init script system must not deadlock. Loop

and deadlock detection and breaking safeties must
be implemented, if those situations are possible
(and they usually are in dependency-based sys-
tems).
The proposed interface has one big shortcom-

ing: it relies on init (or another part of the init
script subsystem) to be able to �gure out the pid
of the process calling the /sbin/init-* commands.
This is a non-trivial assumption, which may prove
to be impossible to implement because:

• the /sbin/init-* commands might be run by
a child process of the init script, and that is
a desirable ability we should not forbid;

• the init script may be run by the local ad-
ministrator directly, outside of a invoke-rc.d
or runlevel change context. It is desirable
that the dependency system is not disabled
for such cases;

1. /sbin/init-provide keyword [keyword...]

Declares that the init script also provides the
facilities identi�ed by the given keywords, in
addition to its own id.

This command will not block, and returns
immediately. It may not be called after init-
before or init-after were used.

2. /sbin/init-before keyword [keyword...]

Declares a dependency where the current init
script must be run sometime before the fa-
cilities identi�ed by the given keywords are
available. Strict ordering must be enforced.

Not all dependency-based init scripts will im-
plement this functionality, and in that case,
init-before should always fail. This command
may block in dynamic systems. It may not
be called after init-after have been used.

3. /sbin/init-after keyword [keyword...]

Declares a dependency where the current init
script must be run sometime after the fa-
cilities identi�ed by the given keywords are
available.

In dynamic systems, this command will block
and return with exit status 0 after the de-
pendencies are satis�ed, or with non-zero exit
status if an error happens (in which case the
dependencies are not guaranteed to be satis-
�ed, and the init script should fail).

4. /sbin/init-test keyword [keyword...]

Returns exit status 0 if the facilities named
by the keywords are all available, exit status
1 if they are not available yet, and exit status
2 if any of them will never be available (this
is an optional feature).

Table 7: init script interface for dependency-
aware systems

18

An easy solution to these problems is to add a
required argument to init-provide, init-before and
init-after that speci�es the pid of the process that
should be watched. These issues, and the best
way to address them, are open for discussion.

References

[1] Pape, Gerrit; runit - minimal replacement for
Sysvinit ; http://smarden.org/runit/

[2] von Leitner, Felix; minit - a small yet feature-
complete init ; http://www.fefe.de/minit/

[3] Gooch, Richard; Linux Boot Scripts;
2002-05-31; http://www.atnf.csiro.au/
people/rgooch/linux/boot-scripts/

[4] proton@energymech.net; Bizarre Sources;
http://www.energymech.net/users/
proton/

[5] Mewburn, Luke; The Design and Implemen-
tation of the NetBSD rc.d system; Wasabi
Systems, Usenix Annual Technical Confer-
ence, June 2001; http://www.mewburn.net/
luke/papers/rc.d.pdf

[6] van Smoorenburg, Miquel; manpage
INIT(8): init, telinit - process control
initialization; Debian Sysvinit 2.84-3 pack-
age

[7] Fremlin, John; jinit ; http://homepage.
ntlworld.com/john.fremlin/programs/
linux/jinit/index.html

[8] Andersen, Erik & others; Busybox ; http://
www.busybox.net/

[9] Trümper, Winfried; Lees, Tom; Schulze,
Martin & Rosenfeld, Roland; �le-rc: Alter-
native boot mechanism using a single con�g-
uration �le; http://packages.debian.org/
file-rc

[10] von Leitner, Felix; diet libc - a libc opti-
mized for small size; http://www.fefe.de/
dietlibc/

[11] Mayo, Leni; Serel - fast boot software; http:
//www.fastboot.org

[12] Free Standards Group; Linux Standard Base,
common speci�cation, Chapter 22 - System
Initialization; http://www.linuxbase.org/

[13] LANANA - The Linux Assigned Names And
Numbers Authority ; http://www.lanana.
org/

[14] Jackson, Ian; Schwarz, Christian; Debian
Policy ML; Debian Policy ; Release 3.5.6.1,
2002-03-14

[15] Holschuh, Henrique de Moraes; Debian Bug
report logs - #76868 [PENDING AMEND-
MENT 2001-02-27] invoke-rc.d interface to
invoke initscripts; Debian bug tracking sys-
tem; http://bugs.debian.org/76868

[16] Holschuh, Henrique de Moraes; Invoke-
rc.d/policy-rc.d interfaces; Draft; http:
//people.debian.org/~hmh/invokerc.
d-policyrc.d-specification.txt

[17] W3C; Resource Description Framework
(RDF); http://www.w3.org/RDF/

6 Revision Log

Revision 1.16

Added fake runlevel u/U to telinit interface;
�xed semantics for fake runlevel q/Q; added
footnote with sysvinit's sans-glibc size; �xed
mistake regarding the internal working of
runlevel S in Sysvinit (it does not execute
any scripts, ever. It is not silently converted
into a switch to runlevel 1); clari�ed the issue
of runlevels 0 and 6 (system shutdown); and
added paragraph 6 to section 5.4.

Revision 1.15 (2002-06-30 22:15:20)

Fixes for proper PDF output using
PDFLATEX.

19

