Neutron Packet Flows

hastexo!
As you have seen by now, we are talking about numerous interfaces here, br-int, br-tun, br-x, eth1/2/3, and for Neutron beginners, it's hard to understand what route within all these devices and hosts packets actually take. So let's take a closer look.

What route do packets take?
• This is the standard situation. We have
• A hypervisor node with
 o br-int: This is what the VMs connect to; every VM running on a hypervisor
 will have its virtual network interface attached to br-int
 o br-tun: This is the tunnel interface that, in GRE mode, adds GRE tunnel
 headers to the packages
 o eth2: The actual internal physical interface where packages send out via
 eth2 go to
• The GRE tunnel, which, of course, is virtual only and would have all hypervisors
 and the network node in it
• The networking node with
 o br-tun/br-int, which serve the same purpose they serve on the hypervisor
 node
 o br-ex physically attached on top of eth3, which is used for communication
 to the outside
 o Network namespaces:
 ▪ qDHCP as interface within the GRE tunnels (one for every tenant
 network)
 ▪ qROUTER for connections to the outside (one for every external
 network)
• Now, let's take a look at what route packets take. Let's start with an easy
 example
How exactly does a packet make it to the internet when it leaves the VM?
The packet leaves the VM and hits the hypervisor node on br-int.
From there, it is forwarded to br-tun, which adds the GRE encapsulation to it.
Finally, it leaves the hypervisor on eth2 into the GRE network.
Finally, it reaches eth2 on the network node.
It gets send through br-tun, which removes the GRE Headers.
It is then forwarded to br-int.
br-int on the network node is connected to the qROUTER namespace.
That is why we defined our external network as router for the admin tenant network earlier!
From br-int, the packet hits the external bridge (br-ex) and finally leaves the network node into the Internet.
How exactly does a packet make it to the internet when it leaves the VM?
• The packet leaves the VM and hits the hypervisor node on br-int
• From there, it is forwarded to br-tun, which adds the GRE encapsulation to it
• Finally, it leaves the hypervisor on eth2 into the GRE network
• Finally, it reaches eth2 on the network node
• It gets send through br-tun, which removes the GRE Headers
• It is then forwarded to br-int
• br-int on the network node is connected to the qDHCP namespace
 - The dnsmasq processes actually are running within the qDHCP namespace context
• The qDHCP request is then answered accordingly
The third example demonstrates what happens in the background if a VM asks for its meta-data by running the cloud-init script at boot time. Things are slightly more complicated here, but let’s see.
• To get a better understanding of the process, first, we need to add the cloud controller to our scheme here, and also, we need to add the so-called management network, which all nodes are physically connected to, with no tunneling, via the eth1 physical interface.
• Also, we have the Nova-API metadata service running on our cloud controller. This is the source of metadata, this is the service that VMs eventually need to connect to to get meaningful metadata information.
• And then, we have the metadata-agent and the metadata proxy running on the network node.
• So how to packets flow?
Let's start with the actual request coming from the VM. It takes its usual way and will eventually make it to the qROUTER namespace.

- Remember: Targets to 169.254.169.254, thus leaves the VM to its default route, which is an IP inside the qROUTER namespace.
- Within the qROUTER namespace, the package will be forwarded via DNAT from port 80 to the qrouter's port 9697.
 - ... which is where the Metadata Proxy is running.
- The Metadata Proxy will relay the packets to the Metadata agent running on the Network node host.
 - This happens outside of any TCP/IP network connectivity; in fact, the MD agent has a UNIX socket open in /var/lib/quantum/metadata_proxy which the Metadata proxy sends the packages into.