
Bits from the Stable Release Management

Bits from the Stable Release Management
Debconf 10

Philipp Kern

August 7, 2010



Bits from the Stable Release Management

Table of contents

1 Stable Release Management in General

2 Point Release Intervals

3 Policies

4 Questions / Comments



Bits from the Stable Release Management

Stable Release Management in General

What does Stable Release Management do?

accept security advisories into proposed-updates

review other fixes targetted to “stable” (mainly those sent for
approval to debian-release@lists.debian.org and those
in the p-u-NEW queue)

prepare a point release announcement

coordinate with stable kernel management and debian-installer
team

coordinate with FTP masters, press, security and CD team to
set a suitable point release date

ensure architectures being in sync, no missing builds

(likewise for oldstable)



Bits from the Stable Release Management

Stable Release Management in General

“proposed-updates”

“proposed-updates” suite is moderated through
proposed-updates-NEW

packages only enter proposed-updates when the RMs tell dak
to accept it

packages in proposed-updates are supposed to work, every
bug encountered should be reported to us ASAP



Bits from the Stable Release Management

Stable Release Management in General

Tool: Queue Overview

“NEW queue summary for stable-proposed-updates” as linked
from http://release.debian.org

automatic debdiff against the current version (i.e. either
stable or proposed-updates)

automated checks for version and installability problems

tracking missing builds, out-of-dates

helping to mostly autogenerate point release updates

also listing point release TODO items and removal requests

http://release.debian.org


Bits from the Stable Release Management

Stable Release Management in General

Open questions

Who is using “proposed-updates”?

How to collect test reports?

This might require checklists for test reports?



Bits from the Stable Release Management

Point Release Intervals

Point Release Intervals

We aim for:

two months between point releases in the “stable” timeframe
four months or more if it’s “oldstable”

some skew might be introduced by ensuring that two do not
collide



Bits from the Stable Release Management

Point Release Intervals

Updates besides Point Releases

some packages require timely updates besides normal point
releases

e.g. tzdata ships newer timezone definitions that should be
pushed to the users, but using security is not appropriate

e.g. clamav might need updates to cope with new virus
signatures

e.g. pidgin/libpurple might need protocol updates to keep up
with non-free IM services



Bits from the Stable Release Management

Point Release Intervals

Flash back: volatile

volatile was introduced with two suites:

volatile proper: a set of packages everyone can update to
(historically: clamav-data, tzdata, etc.)
volatile-sloppy: packages that need larger version bumps to get
useful again (historically: gaim)

separate team, separate infrastructure (own archive host)



Bits from the Stable Release Management

Point Release Intervals

Problems with volatile at the moment

run basically by one person

ancient dak version (with a version still maintained in bzr)

no support for source version 3, etc.

no ability to copy over volatile builds and sources to
proposed-updates

at least: mirroring now handled by mirroradm



Bits from the Stable Release Management

Point Release Intervals

Proposal: integration into SRM

run volatile on the normal infrastructure

use volatile as a suite to pass updates more quickly to the
users than point releases can (c.f. -updates on Ubuntu)

copy into volatile from proposed-updates

copy volatile bits into stable proper at point release time

goal: keep stable as usable as possible



Bits from the Stable Release Management

Policies

Policies



Bits from the Stable Release Management

Policies

The old update policy

1 The package fixes a security problem. An advisory by our own
Security Team is required. Updates need to be approved by
the Security Team.

2 The package fixes a critical bug which can lead to data loss,
data corruption, or an overly broken system, or the package is
broken or not usable (anymore).

3 The stable version of the package is not installable at all due
to broken or unmet dependencies or broken installation scripts.

4 All released architectures have to be in sync.

5 The package gets all released architectures back in sync.

It is “(or (and (or 1 2 3) 4) 5)” (yay, LISP syntax!).



Bits from the Stable Release Management

Policies

The old update policy

1 The package fixes a security problem. An advisory by our own
Security Team is required. Updates need to be approved by
the Security Team.

2 The package fixes a critical bug which can lead to data loss,
data corruption, or an overly broken system, or the package is
broken or not usable (anymore).

3 The stable version of the package is not installable at all due
to broken or unmet dependencies or broken installation scripts.

4 All released architectures have to be in sync.

5 The package gets all released architectures back in sync.

It is “(or (and (or 1 2 3) 4) 5)” (yay, LISP syntax!).



Bits from the Stable Release Management

Policies

The old update policy

1 The package fixes a security problem. An advisory by our own
Security Team is required. Updates need to be approved by
the Security Team.

2 The package fixes a critical bug which can lead to data loss,
data corruption, or an overly broken system, or the package is
broken or not usable (anymore).

3 The stable version of the package is not installable at all due
to broken or unmet dependencies or broken installation scripts.

4 All released architectures have to be in sync.

5 The package gets all released architectures back in sync.

It is “(or (and (or 1 2 3) 4) 5)” (yay, LISP syntax!).



Bits from the Stable Release Management

Policies

The old update policy

1 The package fixes a security problem. An advisory by our own
Security Team is required. Updates need to be approved by
the Security Team.

2 The package fixes a critical bug which can lead to data loss,
data corruption, or an overly broken system, or the package is
broken or not usable (anymore).

3 The stable version of the package is not installable at all due
to broken or unmet dependencies or broken installation scripts.

4 All released architectures have to be in sync.

5 The package gets all released architectures back in sync.

It is “(or (and (or 1 2 3) 4) 5)” (yay, LISP syntax!).



Bits from the Stable Release Management

Policies

The old update policy

1 The package fixes a security problem. An advisory by our own
Security Team is required. Updates need to be approved by
the Security Team.

2 The package fixes a critical bug which can lead to data loss,
data corruption, or an overly broken system, or the package is
broken or not usable (anymore).

3 The stable version of the package is not installable at all due
to broken or unmet dependencies or broken installation scripts.

4 All released architectures have to be in sync.

5 The package gets all released architectures back in sync.

It is “(or (and (or 1 2 3) 4) 5)” (yay, LISP syntax!).



Bits from the Stable Release Management

Policies

The old update policy

1 The package fixes a security problem. An advisory by our own
Security Team is required. Updates need to be approved by
the Security Team.

2 The package fixes a critical bug which can lead to data loss,
data corruption, or an overly broken system, or the package is
broken or not usable (anymore).

3 The stable version of the package is not installable at all due
to broken or unmet dependencies or broken installation scripts.

4 All released architectures have to be in sync.

5 The package gets all released architectures back in sync.

It is “(or (and (or 1 2 3) 4) 5)” (yay, LISP syntax!).



Bits from the Stable Release Management

Policies

The old update policy (2)

Regular bugs and upgrade problems don’t get fixed in new
revisions for the stable distribution.

Packages which will most probably be rejected:

Packages that fix non-critical bugs
Packages for which its binary packages are out of sync with
regard to all supported architectures in the stable distribution
Binary packages for which the source got lost somehow
Packages that fix an unusable minor part of a package



Bits from the Stable Release Management

Policies

The “new“ update policy

Security advisories go all in, if they have the necessary builds
in the proposed-updates suite.

A patch that was not previously acceptable by the old rules is
likely to be acceptable for a stable update if it:

fix a security issue, or
fix a bug of at least severity important, or
fix an installability (binNMU), an FTBFS bug, or
bring architectures back in sync

Common sense with individual updates handled on a
case-by-case basis

Every update risks regressions (e.g. by being rebuilt), we need
to minimize this impact

If you think that stable packages should get fixed in some
regards, please do not hesitate to contact us!



Bits from the Stable Release Management

Policies

Packages that will get newer upstream versions

PostgreSQL (new bugfix releases)

clamav (bugfix and security releases)

tzdata (timezone data)

Mozilla-related packages (Iceweasel, Icedove)

problem: how to tag packages of which we know that they
get larger updates



Bits from the Stable Release Management

Questions / Comments

Questions? Comments?


	Stable Release Management in General
	Point Release Intervals
	Policies
	Questions / Comments

