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» Propellor, configuration management system using Haskell,

written by Joey Hess, presented at DebConfl4 and DebConf17.
> Key ideas:

» using Haskell's type system to find configuration problems
before any hosts are touched

» user’s configuration of their hosts is expressed in the same
language as the tool, not YAML or something.
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» However

> expressing configuration within the constraints of the type
system often awkward and time consuming as compared with
the number of bugs actually caught

» only one method to apply properties to hosts: connect,
compile Propellor on remote side, apply all its properties

» what about hosts which can’t compile Propellor, or compile it
very slowly?
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Project status

» Stable core API, deployments unlikely to break
» Runs well on SBCL on Debian

» Should be portable to other Unix and Common Lisp
implementations

» Mostly a matter of ifdef’ing out Linux- and SBCL-specific
features.
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Basic architecture

property some configuration a host can have or lack
host list of host attributes and list of properties
connection means of applying properties to host, e.g. :ssh
deployment host 4+ connections

prerequisite data secrets, and other files that properties need

» Consfigurator is just a Lisp library, no executables

» User's configuration of their hosts is just another Lisp library,
your "consfig"
» Typical usage
» Loading Consfigurator and consfig into root Lisp defines hosts,
properties and means of obtaining prerequisite data

» User then constructs and executes deployments at the root
Lisp's REPL.
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Properties

:POSIX properties perform only serial I/O, writing files and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

> :SSH, :SUDO can apply only :POSIX properties

» Use properties to configure tiny hosts, shell accounts etc.
» Lower startup overhead, so useful for quick tests.

» :SBCL can apply both :POSIX and :LISP properties

» Can be significantly faster as avoids roundtrips.
» Can do things that only a remote process can do.

» Basic properties written explicitly, but most properties are
compositions of other existing properties

» Reduces how much Lisp you need to learn to get going.
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Connections

» Arbitrary chaining, up to what makes sense.
> (:ssh :sbcl (:lxc :name "my-lxc-hostname"))

» In this case we start up a remote Lisp over SSH, and that
process uses setns(2) to get into the LXC.

» (:ssh (:1xc :name "my-lxc-hostname") :sbcl)
» Will use ssh and nsenter(1) to get a shell in the LXC, and then
start up Lisp inside it.
» Much slower if you have more than one LXC!
» ((:ssh :user "root") :sbcl (:setuid :user "ntp"))
» Useful if you need to do things as several users.

» Process inside LXC and process running as other user only
have the secrets they're meant to have.
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Taking full advantage of subdeployments

» The fact that deployments are themselves properties, and can
thus be nested, is well suited to expressing many things
traditionally done without the help of declarative configuration
management

» Building bootable disc images using the same host definitions
» Doing OS installs when Consfigurator is running on a live

system
» Dumping images to execute arbitrary Lisp and re-running them

from cron.
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» Like Propellor, an attempt to incorporate contemporary ideas
about programmable infrastructure and reproducible systems
into Debian-style systems administration

» You can get a lot of benefits of NixOS/Guix without giving up
on the maturity of the Debian archive, and the advantages of
the way we do things

» Consfigurator’s flexibility in applying small numbers of
properties rather than doing full builds, and switching between
connection types, is a pretty nice incremental systems
administration environment



