Consfigurator: Lisp declarative configuration
management

Sean Whitton

DebConf22



Introduction

» Propellor, configuration management system using Haskell,
written by Joey Hess, presented at DebConfl4 and DebConf17.



Introduction

» Propellor, configuration management system using Haskell,

written by Joey Hess, presented at DebConfl4 and DebConf17.
> Key ideas:

» using Haskell's type system to find configuration problems
before any hosts are touched

» user’s configuration of their hosts is expressed in the same
language as the tool, not YAML or something.



Introduction

> However
> expressing configuration within the constraints of the type
system often awkward and time consuming as compared with
the number of bugs actually caught



Introduction

» However

> expressing configuration within the constraints of the type
system often awkward and time consuming as compared with
the number of bugs actually caught

» only one method to apply properties to hosts: connect,
compile Propellor on remote side, apply all its properties



Introduction

» However

> expressing configuration within the constraints of the type
system often awkward and time consuming as compared with
the number of bugs actually caught

» only one method to apply properties to hosts: connect,
compile Propellor on remote side, apply all its properties

» what about hosts which can’t compile Propellor, or compile it
very slowly?



Project status

» Stable core API, deployments unlikely to break



Project status

» Stable core API, deployments unlikely to break
» Runs well on SBCL on Debian

» Should be portable to other Unix and Common Lisp
implementations



Project status

» Stable core API, deployments unlikely to break
» Runs well on SBCL on Debian

» Should be portable to other Unix and Common Lisp
implementations

» Mostly a matter of ifdef’ing out Linux- and SBCL-specific
features.



Basic architecture

property some configuration a host can have or lack
host list of host attributes and list of properties
connection means of applying properties to host, e.g. :ssh
deployment host 4+ connections

prerequisite data secrets, and other files that properties need



Basic architecture

property some configuration a host can have or lack
host list of host attributes and list of properties
connection means of applying properties to host, e.g. :ssh
deployment host 4+ connections

prerequisite data secrets, and other files that properties need

» Consfigurator is just a Lisp library, no executables



Basic architecture

property some configuration a host can have or lack
host list of host attributes and list of properties
connection means of applying properties to host, e.g. :ssh
deployment host 4+ connections

prerequisite data secrets, and other files that properties need

» Consfigurator is just a Lisp library, no executables

» User's configuration of their hosts is just another Lisp library,
your "consfig"



Basic architecture

property some configuration a host can have or lack
host list of host attributes and list of properties
connection means of applying properties to host, e.g. :ssh
deployment host 4+ connections

prerequisite data secrets, and other files that properties need

» Consfigurator is just a Lisp library, no executables

» User's configuration of their hosts is just another Lisp library,
your "consfig"

» Typical usage

» Loading Consfigurator and consfig into root Lisp defines hosts,
properties and means of obtaining prerequisite data



Basic architecture

property some configuration a host can have or lack
host list of host attributes and list of properties
connection means of applying properties to host, e.g. :ssh
deployment host 4+ connections

prerequisite data secrets, and other files that properties need

» Consfigurator is just a Lisp library, no executables

» User's configuration of their hosts is just another Lisp library,
your "consfig"
» Typical usage
» Loading Consfigurator and consfig into root Lisp defines hosts,
properties and means of obtaining prerequisite data

» User then constructs and executes deployments at the root
Lisp's REPL.



Properties

:POSIX properties perform only serial I/O, writing files and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side



Properties

:POSIX properties perform only serial I/O, writing files and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

> :SSH, :SUDO can apply only :POSIX properties
» Use properties to configure tiny hosts, shell accounts etc.



Properties

:POSIX properties perform only serial I/O, writing files and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

> :SSH, :SUDO can apply only :POSIX properties

» Use properties to configure tiny hosts, shell accounts etc.
» Lower startup overhead, so useful for quick tests.



Properties

:POSIX properties perform only serial I/O, writing files and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

> :SSH, :SUDO can apply only :POSIX properties

» Use properties to configure tiny hosts, shell accounts etc.
» Lower startup overhead, so useful for quick tests.

» :SBCL can apply both :POSIX and :LISP properties



Properties

:POSIX properties perform only serial I/O, writing files and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

> :SSH, :SUDO can apply only :POSIX properties

» Use properties to configure tiny hosts, shell accounts etc.
» Lower startup overhead, so useful for quick tests.

» :SBCL can apply both :POSIX and :LISP properties
» Can be significantly faster as avoids roundtrips.



Properties

:POSIX properties perform only serial I/O, writing files and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

> :SSH, :SUDO can apply only :POSIX properties
» Use properties to configure tiny hosts, shell accounts etc.
» Lower startup overhead, so useful for quick tests.

» :SBCL can apply both :POSIX and :LISP properties

» Can be significantly faster as avoids roundtrips.
» Can do things that only a remote process can do.



Properties

:POSIX properties perform only serial I/O, writing files and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

> :SSH, :SUDO can apply only :POSIX properties
» Use properties to configure tiny hosts, shell accounts etc.
» Lower startup overhead, so useful for quick tests.
» :SBCL can apply both :POSIX and :LISP properties
» Can be significantly faster as avoids roundtrips.
» Can do things that only a remote process can do.

» Basic properties written explicitly, but most properties are
compositions of other existing properties



Properties

:POSIX properties perform only serial I/O, writing files and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

> :SSH, :SUDO can apply only :POSIX properties

» Use properties to configure tiny hosts, shell accounts etc.
» Lower startup overhead, so useful for quick tests.

» :SBCL can apply both :POSIX and :LISP properties

» Can be significantly faster as avoids roundtrips.
» Can do things that only a remote process can do.

» Basic properties written explicitly, but most properties are
compositions of other existing properties

» Reduces how much Lisp you need to learn to get going.



Connections

» Arbitrary chaining, up to what makes sense.
> (:ssh :sbcl (:lxc :name "my-lxc-hostname"))



Connections

» Arbitrary chaining, up to what makes sense.
> (:ssh :sbcl (:lxc :name "my-lxc-hostname"))

» In this case we start up a remote Lisp over SSH, and that
process uses setns(2) to get into the LXC.



Connections

» Arbitrary chaining, up to what makes sense.
> (:ssh :sbcl (:lxc :name "my-lxc-hostname"))
» In this case we start up a remote Lisp over SSH, and that
process uses setns(2) to get into the LXC.
» (:ssh (:1xc :name "my-lxc-hostname") :sbcl)

» Will use ssh and nsenter(1) to get a shell in the LXC, and then
start up Lisp inside it.



Connections

» Arbitrary chaining, up to what makes sense.
> (:ssh :sbcl (:lxc :name "my-lxc-hostname"))
» In this case we start up a remote Lisp over SSH, and that
process uses setns(2) to get into the LXC.
» (:ssh (:1xc :name "my-lxc-hostname") :sbcl)

» Will use ssh and nsenter(1) to get a shell in the LXC, and then
start up Lisp inside it.
» Much slower if you have more than one LXC!



Connections

» Arbitrary chaining, up to what makes sense.
> (:ssh :sbcl (:lxc :name "my-lxc-hostname"))
» In this case we start up a remote Lisp over SSH, and that
process uses setns(2) to get into the LXC.
» (:ssh (:1xc :name "my-lxc-hostname") :sbcl)

» Will use ssh and nsenter(1) to get a shell in the LXC, and then
start up Lisp inside it.
» Much slower if you have more than one LXC!

» ((:ssh :user "root") :sbcl (:setuid :user "ntp"))



Connections

» Arbitrary chaining, up to what makes sense.
> (:ssh :sbcl (:lxc :name "my-lxc-hostname"))
» In this case we start up a remote Lisp over SSH, and that
process uses setns(2) to get into the LXC.
» (:ssh (:1xc :name "my-lxc-hostname") :sbcl)
» Will use ssh and nsenter(1) to get a shell in the LXC, and then
start up Lisp inside it.
» Much slower if you have more than one LXC!
» ((:ssh :user "root") :sbcl (:setuid :user "ntp"))
» Useful if you need to do things as several users.



Connections

» Arbitrary chaining, up to what makes sense.
> (:ssh :sbcl (:lxc :name "my-lxc-hostname"))

» In this case we start up a remote Lisp over SSH, and that
process uses setns(2) to get into the LXC.

» (:ssh (:1xc :name "my-lxc-hostname") :sbcl)
» Will use ssh and nsenter(1) to get a shell in the LXC, and then
start up Lisp inside it.
» Much slower if you have more than one LXC!
» ((:ssh :user "root") :sbcl (:setuid :user "ntp"))
» Useful if you need to do things as several users.

» Process inside LXC and process running as other user only
have the secrets they're meant to have.



Taking full advantage of subdeployments

» The fact that deployments are themselves properties, and can
thus be nested, is well suited to expressing many things
traditionally done without the help of declarative configuration
management



Taking full advantage of subdeployments

» The fact that deployments are themselves properties, and can
thus be nested, is well suited to expressing many things
traditionally done without the help of declarative configuration
management

» Building bootable disc images using the same host definitions



Taking full advantage of subdeployments

» The fact that deployments are themselves properties, and can
thus be nested, is well suited to expressing many things
traditionally done without the help of declarative configuration
management

» Building bootable disc images using the same host definitions
» Doing OS installs when Consfigurator is running on a live
system



Taking full advantage of subdeployments

» The fact that deployments are themselves properties, and can
thus be nested, is well suited to expressing many things
traditionally done without the help of declarative configuration
management

» Building bootable disc images using the same host definitions
» Doing OS installs when Consfigurator is running on a live

system
» Dumping images to execute arbitrary Lisp and re-running them

from cron.



Consfigurator and Debian

» Like Propellor, an attempt to incorporate contemporary ideas
about programmable infrastructure and reproducible systems
into Debian-style systems administration



Consfigurator and Debian

» Like Propellor, an attempt to incorporate contemporary ideas
about programmable infrastructure and reproducible systems
into Debian-style systems administration

» You can get a lot of benefits of NixOS/Guix without giving up
on the maturity of the Debian archive, and the advantages of
the way we do things



Consfigurator and Debian

» Like Propellor, an attempt to incorporate contemporary ideas
about programmable infrastructure and reproducible systems
into Debian-style systems administration

» You can get a lot of benefits of NixOS/Guix without giving up
on the maturity of the Debian archive, and the advantages of
the way we do things

» Consfigurator’s flexibility in applying small numbers of
properties rather than doing full builds, and switching between
connection types, is a pretty nice incremental systems
administration environment



