
Cons�gurator: Lisp declarative con�guration

management

Sean Whitton

DebConf22



Introduction

I Propellor, con�guration management system using Haskell,
written by Joey Hess, presented at DebConf14 and DebConf17.

I Key ideas:
I using Haskell's type system to �nd con�guration problems

before any hosts are touched
I user's con�guration of their hosts is expressed in the same

language as the tool, not YAML or something.



Introduction

I Propellor, con�guration management system using Haskell,
written by Joey Hess, presented at DebConf14 and DebConf17.

I Key ideas:
I using Haskell's type system to �nd con�guration problems

before any hosts are touched
I user's con�guration of their hosts is expressed in the same

language as the tool, not YAML or something.



Introduction

I However
I expressing con�guration within the constraints of the type

system often awkward and time consuming as compared with
the number of bugs actually caught

I only one method to apply properties to hosts: connect,
compile Propellor on remote side, apply all its properties

I what about hosts which can't compile Propellor, or compile it
very slowly?



Introduction

I However
I expressing con�guration within the constraints of the type

system often awkward and time consuming as compared with
the number of bugs actually caught

I only one method to apply properties to hosts: connect,
compile Propellor on remote side, apply all its properties

I what about hosts which can't compile Propellor, or compile it
very slowly?



Introduction

I However
I expressing con�guration within the constraints of the type

system often awkward and time consuming as compared with
the number of bugs actually caught

I only one method to apply properties to hosts: connect,
compile Propellor on remote side, apply all its properties

I what about hosts which can't compile Propellor, or compile it
very slowly?



Project status

I Stable core API, deployments unlikely to break

I Runs well on SBCL on Debian

I Should be portable to other Unix and Common Lisp
implementations

I Mostly a matter of ifdef'ing out Linux- and SBCL-speci�c
features.



Project status

I Stable core API, deployments unlikely to break

I Runs well on SBCL on Debian

I Should be portable to other Unix and Common Lisp
implementations

I Mostly a matter of ifdef'ing out Linux- and SBCL-speci�c
features.



Project status

I Stable core API, deployments unlikely to break

I Runs well on SBCL on Debian

I Should be portable to other Unix and Common Lisp
implementations
I Mostly a matter of ifdef'ing out Linux- and SBCL-speci�c

features.



Basic architecture

property some con�guration a host can have or lack

host list of host attributes and list of properties

connection means of applying properties to host, e.g. :ssh

deployment host + connections

prerequisite data secrets, and other �les that properties need

I Cons�gurator is just a Lisp library, no executables

I User's con�guration of their hosts is just another Lisp library,
your "cons�g"

I Typical usage

I Loading Cons�gurator and cons�g into root Lisp de�nes hosts,
properties and means of obtaining prerequisite data

I User then constructs and executes deployments at the root
Lisp's REPL.



Basic architecture

property some con�guration a host can have or lack

host list of host attributes and list of properties

connection means of applying properties to host, e.g. :ssh

deployment host + connections

prerequisite data secrets, and other �les that properties need

I Cons�gurator is just a Lisp library, no executables

I User's con�guration of their hosts is just another Lisp library,
your "cons�g"

I Typical usage

I Loading Cons�gurator and cons�g into root Lisp de�nes hosts,
properties and means of obtaining prerequisite data

I User then constructs and executes deployments at the root
Lisp's REPL.



Basic architecture

property some con�guration a host can have or lack

host list of host attributes and list of properties

connection means of applying properties to host, e.g. :ssh

deployment host + connections

prerequisite data secrets, and other �les that properties need

I Cons�gurator is just a Lisp library, no executables

I User's con�guration of their hosts is just another Lisp library,
your "cons�g"

I Typical usage

I Loading Cons�gurator and cons�g into root Lisp de�nes hosts,
properties and means of obtaining prerequisite data

I User then constructs and executes deployments at the root
Lisp's REPL.



Basic architecture

property some con�guration a host can have or lack

host list of host attributes and list of properties

connection means of applying properties to host, e.g. :ssh

deployment host + connections

prerequisite data secrets, and other �les that properties need

I Cons�gurator is just a Lisp library, no executables

I User's con�guration of their hosts is just another Lisp library,
your "cons�g"

I Typical usage
I Loading Cons�gurator and cons�g into root Lisp de�nes hosts,

properties and means of obtaining prerequisite data

I User then constructs and executes deployments at the root
Lisp's REPL.



Basic architecture

property some con�guration a host can have or lack

host list of host attributes and list of properties

connection means of applying properties to host, e.g. :ssh

deployment host + connections

prerequisite data secrets, and other �les that properties need

I Cons�gurator is just a Lisp library, no executables

I User's con�guration of their hosts is just another Lisp library,
your "cons�g"

I Typical usage
I Loading Cons�gurator and cons�g into root Lisp de�nes hosts,

properties and means of obtaining prerequisite data
I User then constructs and executes deployments at the root

Lisp's REPL.



Properties

:POSIX properties perform only serial I/O, writing �les and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

I :SSH, :SUDO can apply only :POSIX properties

I Use properties to con�gure tiny hosts, shell accounts etc.
I Lower startup overhead, so useful for quick tests.

I :SBCL can apply both :POSIX and :LISP properties

I Can be signi�cantly faster as avoids roundtrips.
I Can do things that only a remote process can do.

I Basic properties written explicitly, but most properties are
compositions of other existing properties

I Reduces how much Lisp you need to learn to get going.



Properties

:POSIX properties perform only serial I/O, writing �les and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

I :SSH, :SUDO can apply only :POSIX properties
I Use properties to con�gure tiny hosts, shell accounts etc.

I Lower startup overhead, so useful for quick tests.

I :SBCL can apply both :POSIX and :LISP properties

I Can be signi�cantly faster as avoids roundtrips.
I Can do things that only a remote process can do.

I Basic properties written explicitly, but most properties are
compositions of other existing properties

I Reduces how much Lisp you need to learn to get going.



Properties

:POSIX properties perform only serial I/O, writing �les and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

I :SSH, :SUDO can apply only :POSIX properties
I Use properties to con�gure tiny hosts, shell accounts etc.
I Lower startup overhead, so useful for quick tests.

I :SBCL can apply both :POSIX and :LISP properties

I Can be signi�cantly faster as avoids roundtrips.
I Can do things that only a remote process can do.

I Basic properties written explicitly, but most properties are
compositions of other existing properties

I Reduces how much Lisp you need to learn to get going.



Properties

:POSIX properties perform only serial I/O, writing �les and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

I :SSH, :SUDO can apply only :POSIX properties
I Use properties to con�gure tiny hosts, shell accounts etc.
I Lower startup overhead, so useful for quick tests.

I :SBCL can apply both :POSIX and :LISP properties

I Can be signi�cantly faster as avoids roundtrips.
I Can do things that only a remote process can do.

I Basic properties written explicitly, but most properties are
compositions of other existing properties

I Reduces how much Lisp you need to learn to get going.



Properties

:POSIX properties perform only serial I/O, writing �les and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

I :SSH, :SUDO can apply only :POSIX properties
I Use properties to con�gure tiny hosts, shell accounts etc.
I Lower startup overhead, so useful for quick tests.

I :SBCL can apply both :POSIX and :LISP properties
I Can be signi�cantly faster as avoids roundtrips.

I Can do things that only a remote process can do.

I Basic properties written explicitly, but most properties are
compositions of other existing properties

I Reduces how much Lisp you need to learn to get going.



Properties

:POSIX properties perform only serial I/O, writing �les and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

I :SSH, :SUDO can apply only :POSIX properties
I Use properties to con�gure tiny hosts, shell accounts etc.
I Lower startup overhead, so useful for quick tests.

I :SBCL can apply both :POSIX and :LISP properties
I Can be signi�cantly faster as avoids roundtrips.
I Can do things that only a remote process can do.

I Basic properties written explicitly, but most properties are
compositions of other existing properties

I Reduces how much Lisp you need to learn to get going.



Properties

:POSIX properties perform only serial I/O, writing �les and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

I :SSH, :SUDO can apply only :POSIX properties
I Use properties to con�gure tiny hosts, shell accounts etc.
I Lower startup overhead, so useful for quick tests.

I :SBCL can apply both :POSIX and :LISP properties
I Can be signi�cantly faster as avoids roundtrips.
I Can do things that only a remote process can do.

I Basic properties written explicitly, but most properties are
compositions of other existing properties

I Reduces how much Lisp you need to learn to get going.



Properties

:POSIX properties perform only serial I/O, writing �les and running
shell commands

:LISP properties execute arbitrary Lisp code on the remote side

I :SSH, :SUDO can apply only :POSIX properties
I Use properties to con�gure tiny hosts, shell accounts etc.
I Lower startup overhead, so useful for quick tests.

I :SBCL can apply both :POSIX and :LISP properties
I Can be signi�cantly faster as avoids roundtrips.
I Can do things that only a remote process can do.

I Basic properties written explicitly, but most properties are
compositions of other existing properties
I Reduces how much Lisp you need to learn to get going.



Connections

I Arbitrary chaining, up to what makes sense.

I (:ssh :sbcl (:lxc :name "my-lxc-hostname"))

I In this case we start up a remote Lisp over SSH, and that
process uses setns(2) to get into the LXC.

I (:ssh (:lxc :name "my-lxc-hostname") :sbcl)

I Will use ssh and nsenter(1) to get a shell in the LXC, and then
start up Lisp inside it.

I Much slower if you have more than one LXC!

I ((:ssh :user "root") :sbcl (:setuid :user "ntp"))

I Useful if you need to do things as several users.

I Process inside LXC and process running as other user only
have the secrets they're meant to have.



Connections

I Arbitrary chaining, up to what makes sense.

I (:ssh :sbcl (:lxc :name "my-lxc-hostname"))
I In this case we start up a remote Lisp over SSH, and that

process uses setns(2) to get into the LXC.

I (:ssh (:lxc :name "my-lxc-hostname") :sbcl)

I Will use ssh and nsenter(1) to get a shell in the LXC, and then
start up Lisp inside it.

I Much slower if you have more than one LXC!

I ((:ssh :user "root") :sbcl (:setuid :user "ntp"))

I Useful if you need to do things as several users.

I Process inside LXC and process running as other user only
have the secrets they're meant to have.



Connections

I Arbitrary chaining, up to what makes sense.

I (:ssh :sbcl (:lxc :name "my-lxc-hostname"))
I In this case we start up a remote Lisp over SSH, and that

process uses setns(2) to get into the LXC.

I (:ssh (:lxc :name "my-lxc-hostname") :sbcl)
I Will use ssh and nsenter(1) to get a shell in the LXC, and then

start up Lisp inside it.

I Much slower if you have more than one LXC!

I ((:ssh :user "root") :sbcl (:setuid :user "ntp"))

I Useful if you need to do things as several users.

I Process inside LXC and process running as other user only
have the secrets they're meant to have.



Connections

I Arbitrary chaining, up to what makes sense.

I (:ssh :sbcl (:lxc :name "my-lxc-hostname"))
I In this case we start up a remote Lisp over SSH, and that

process uses setns(2) to get into the LXC.

I (:ssh (:lxc :name "my-lxc-hostname") :sbcl)
I Will use ssh and nsenter(1) to get a shell in the LXC, and then

start up Lisp inside it.
I Much slower if you have more than one LXC!

I ((:ssh :user "root") :sbcl (:setuid :user "ntp"))

I Useful if you need to do things as several users.

I Process inside LXC and process running as other user only
have the secrets they're meant to have.



Connections

I Arbitrary chaining, up to what makes sense.

I (:ssh :sbcl (:lxc :name "my-lxc-hostname"))
I In this case we start up a remote Lisp over SSH, and that

process uses setns(2) to get into the LXC.

I (:ssh (:lxc :name "my-lxc-hostname") :sbcl)
I Will use ssh and nsenter(1) to get a shell in the LXC, and then

start up Lisp inside it.
I Much slower if you have more than one LXC!

I ((:ssh :user "root") :sbcl (:setuid :user "ntp"))

I Useful if you need to do things as several users.

I Process inside LXC and process running as other user only
have the secrets they're meant to have.



Connections

I Arbitrary chaining, up to what makes sense.

I (:ssh :sbcl (:lxc :name "my-lxc-hostname"))
I In this case we start up a remote Lisp over SSH, and that

process uses setns(2) to get into the LXC.

I (:ssh (:lxc :name "my-lxc-hostname") :sbcl)
I Will use ssh and nsenter(1) to get a shell in the LXC, and then

start up Lisp inside it.
I Much slower if you have more than one LXC!

I ((:ssh :user "root") :sbcl (:setuid :user "ntp"))
I Useful if you need to do things as several users.

I Process inside LXC and process running as other user only
have the secrets they're meant to have.



Connections

I Arbitrary chaining, up to what makes sense.

I (:ssh :sbcl (:lxc :name "my-lxc-hostname"))
I In this case we start up a remote Lisp over SSH, and that

process uses setns(2) to get into the LXC.

I (:ssh (:lxc :name "my-lxc-hostname") :sbcl)
I Will use ssh and nsenter(1) to get a shell in the LXC, and then

start up Lisp inside it.
I Much slower if you have more than one LXC!

I ((:ssh :user "root") :sbcl (:setuid :user "ntp"))
I Useful if you need to do things as several users.

I Process inside LXC and process running as other user only
have the secrets they're meant to have.



Taking full advantage of subdeployments

I The fact that deployments are themselves properties, and can
thus be nested, is well suited to expressing many things
traditionally done without the help of declarative con�guration
management

I Building bootable disc images using the same host de�nitions
I Doing OS installs when Cons�gurator is running on a live

system
I Dumping images to execute arbitrary Lisp and re-running them

from cron.



Taking full advantage of subdeployments

I The fact that deployments are themselves properties, and can
thus be nested, is well suited to expressing many things
traditionally done without the help of declarative con�guration
management
I Building bootable disc images using the same host de�nitions

I Doing OS installs when Cons�gurator is running on a live
system

I Dumping images to execute arbitrary Lisp and re-running them
from cron.



Taking full advantage of subdeployments

I The fact that deployments are themselves properties, and can
thus be nested, is well suited to expressing many things
traditionally done without the help of declarative con�guration
management
I Building bootable disc images using the same host de�nitions
I Doing OS installs when Cons�gurator is running on a live

system

I Dumping images to execute arbitrary Lisp and re-running them
from cron.



Taking full advantage of subdeployments

I The fact that deployments are themselves properties, and can
thus be nested, is well suited to expressing many things
traditionally done without the help of declarative con�guration
management
I Building bootable disc images using the same host de�nitions
I Doing OS installs when Cons�gurator is running on a live

system
I Dumping images to execute arbitrary Lisp and re-running them

from cron.



Cons�gurator and Debian

I Like Propellor, an attempt to incorporate contemporary ideas
about programmable infrastructure and reproducible systems
into Debian-style systems administration

I You can get a lot of bene�ts of NixOS/Guix without giving up
on the maturity of the Debian archive, and the advantages of
the way we do things

I Cons�gurator's �exibility in applying small numbers of
properties rather than doing full builds, and switching between
connection types, is a pretty nice incremental systems
administration environment



Cons�gurator and Debian

I Like Propellor, an attempt to incorporate contemporary ideas
about programmable infrastructure and reproducible systems
into Debian-style systems administration

I You can get a lot of bene�ts of NixOS/Guix without giving up
on the maturity of the Debian archive, and the advantages of
the way we do things

I Cons�gurator's �exibility in applying small numbers of
properties rather than doing full builds, and switching between
connection types, is a pretty nice incremental systems
administration environment



Cons�gurator and Debian

I Like Propellor, an attempt to incorporate contemporary ideas
about programmable infrastructure and reproducible systems
into Debian-style systems administration

I You can get a lot of bene�ts of NixOS/Guix without giving up
on the maturity of the Debian archive, and the advantages of
the way we do things

I Cons�gurator's �exibility in applying small numbers of
properties rather than doing full builds, and switching between
connection types, is a pretty nice incremental systems
administration environment


