
Automating Ganeti
Automating Aspects of Ganeti administration.

© 2010-2011 Google
Use under GPLv2+ or CC-by-SA
Some images borrowed/modified from Lance Albertson and Iustin Pop

• What are the ways one can automate Ganeti? (shell and python)

• What is required to use the RAPI? (cluster name, password)

• Why is node homogeneity important?

• How can I use Puppet to configure a new node?

Programatic control of Ganeti
Ganeti is all about automating the complex. You can write your own automation to control Ganeti.

Use bash for small scripts
Ex: Find instances that are not using all the RAM allocated to them:

#! /bin/bash

ITEMS=$(gnt-instance list -o name,oper_ram,be/memory | awk '$2 != $3')
for i in $ITEMS ; do
 echo 'Why u no use your RAM,' $i '?'
done

• "list" is faster, and easier to parse, than "info"

• gnt-* commands don't return until the action is complete.

• Add --submit if waiting is not required.

• Submit long-running jobs with --priority=low

RAPI

• RAPI is the Remote API.

• (not to be confused with the API used between masterd and noded)

• It is RESTful

• Client library hides all the details. You just need the cluster name and (for write access) credentials.

• http://docs.ganeti.org/ganeti/current/html/rapi.html

Python Examples (1)
Read only requires no password:

import ganeti_rapi_client as grc

rapi = grc.GanetiRapiClient('cluster1.example.com')

http://docs.ganeti.org/ganeti/current/html/rapi.html

print rapi.GetInfo()
print rapi.GetInstances(bulk=True)

Tip: Results are often long. Make them readable with pprint:

import pprint

pp = pprint.PrettyPrinter(indent=4).pprint
census = rapi.GetInstances(bulk=True)
pp(census)

Python Examples (2)
Read/Write requires credentials:

import ganeti_rapi_client as grc

rapi = grc.GanetiRapiClient('cluster1.example.com')
rapi = grc.GanetiRapiClient(
 'cluster1', username='USERNAME', password='PASSWORD')

Now "write" commands will work:
rapi.AddClusterTags(tags=['heuer'])

ProTip: Your cluster is alive
Bad: Things could change between queries:

gnt-instance list -F 'pnode == "gnta1"'
read -p 'Shut these down? ' ANS
if [[$ANS == 'y']]; then
 gnt-instance list -F 'pnode == "gnta1"' -o name \
 --no-headings |
 xargs -n1 gnt-instance shutdown
fi

Good: Make list and work from it:

L=$(gnt-instance list -F 'pnode == "gnta1"' -o name --no-headings)
echo $L ; read -p 'Shut these down? ' ANS
if [[$ANS == 'y']]; then
 echo $L | xargs -n1 gnt-instance shutdown -f
fi

Things to automate

• Adding instances of various types.

• To insure all parameters are correct

• Periodic rebalances

• Check to see if sufficiently unbalanced first

• Detect/fix DRBD issues

• Find instances in degrated mode, stuck replication, etc.

• Workflow for evacuating a node

• remove from monitoring system

• evacuate primaries and secondiares

• check to see if evacuation complete

• print that it is safe to power off node for maintenance

• Configuring a node

Automation Secret Formula

• Keep notes as you work

• Once you "get it right", write a checklist

• Automate the configuration of a node

• Shell script

• Configuration Management systems like CfEngine/Puppet/Chef.
You'll be glad you did when you repeat a task months later.

Automating node configuration
Configure nodes consistantly: package versions, configuration files, network configuration

• Ganeti runs smoother: Fewer "UFO" problems.

• Easier to administer: Less to remember.

Automate node configuration to achieve consistency.

"A foolish consistency is the hobgoblin of little minds."

Ralph Waldo Emerson

"Don't be a food, configure all nodes consistently."

Guido and Tom

General strategy

1. Use PXE to install a "base OS"

2. Let installer partition the disks

3. Use CfEngine, Puppet or Chef to configure the host

Puppet Tip 1:
Install specific version of a package, not 'latest':

• Reduces "surprise" upgrades in depot.

• Required for a "DEV -> QA -> PRODUCTION" strategy

package {
 'xen-hypervisor-4.0-amd64': ensure => '4.0.1-5.2';
 'ganeti2': ensure => '2.6.0-1';
}

Puppet Tip 2:
Add-ons like Augeas can edit complex configuration files:

augeas{"grup_ganeti_settings" :
 context => '/files/etc/default/grub',
 changes => [
 'set GRUB_DISABLE_OS_PROBER true',
 'set GRUB_CMDLINE_XEN_DEFAULT \'"dom0_mem=512M"\'',
]
}

Latest release understands the LISP-like format of xend-config.sxp and much, much more.

Puppet Tip 3:
/etc/network/interfaces can be generated by template...

$primary_interface_name = ...
$primary_interface_ip = ...
$replication_interface_name = ...
$replication_interface_ip = ...

file {
 path => "/etc/network/interfaces",
 owner => root,
 group => root,
 mode => 644,
 content => template('interfaces-2nic.erb),
}

Puppet Tip 3b:
...or use Augeas to edit /etc/network/interfaces in place:

augeas { "eth1":
 context => "/files/etc/network/interfaces",
 changes => [
 "set auto[child::1 = 'eth1']/1 eth1",
 "set iface[. = 'eth1'] eth1",
 "set iface[. = 'eth1']/family inet",

 "set iface[. = 'eth1']/method dhcp",
],
}

Conclusion
Questions?

© 2010-2011 Google
Use under GPLv2+ or CC-by-SA
Some images borrowed/modified from Lance Albertson and Iustin Pop

	Programatic control of Ganeti
	Use bash for small scripts
	RAPI
	Python Examples (1)
	Python Examples (2)
	ProTip: Your cluster is alive
	Things to automate
	Automation Secret Formula
	Automating node configuration
	General strategy
	Puppet Tip 1:
	Puppet Tip 2:
	Puppet Tip 3:
	Puppet Tip 3b:
	Conclusion

