
Ganeti design

A cluster virtualization manager, internals.
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Node roles (management level)

• Master Node

• runs ganeti-masterd, rapi, noded and confd

• Master candidates

• have a full copy of the config, can become master

• run ganeti-confd and noded

• Master capable

• can be upgraded to master candidates, if needed

• Regular nodes

• cannot become master

• get only part of the config

• Offline nodes, are in repair

Node roles (instance hosting level)

• VM capable nodes

• can run virtual machines

• Drained nodes

• are being evacuated

• Offlined nodes, are in repair

Ganeti Components
Main Ganeti components, and how they communicate:



Ganeti Core Structure
Core source structure:

Jobs

• List of opcodes, executed in sequence

• Submitted by the cli, or via rapi, or by other jobs

Opcodes



• Cluster business logic

• Implemented in cmdlib

RPCs

• Per-node business logic

• Implemented in backend (using bdev, hypervisor, runcmd)

Config

• Tree of "objects" with all the cluster entities

• Replicated to all master candidates



ssconf

• Flat-file export of parts of the config

• Available on all nodes

Customizing Ganeti
Most common customizations:

• Altering hypervisor behavior

• Adding an hypervisor parameter

• Altering cluster business logic

• Adding an option to the cluster business logic

• Adding a backend storage

• Adding a new hypervisor

Altering hypervisor behavior (simple)

• Edit the logic in your hypervisor's file

• For example add a command line flag to kvm, or a config value for xen

Adding an hypervisor parameter (simple)



• Add the parameter in constants.py (eg: HV_KVM_SPICE_USE_VDAGENT)

• Edit the logic in your hypervisor's file

• eg: migration bandwidth and downtime control: commit e43d4f9f

Altering cluster business logic (medium)

• Change the logic in cmdlib.py

• Be careful w.r.t. locking (do you need more? less?)

• Add any rpc to backend.py, rpc_defs.py, server/noded.py

• If the hypervisor interface changes, update all hypervisors

Adding opcode level options (medium)

• Add the option field to opcodes.py, use the right type (see ht.py)

• Use the option in cmdlib (see "altering cluster business logic")

• Add the command line flag to cli.py and the right utility in client/*

Adding a backend storage (hard)

• Implement the BlockDev interface in bdev.py

• Add the logic in cmdlib (eg. migration, verify)

• Add the new storage type name to constants

• Add any parameter the new storage needs to constants

• Modify objects.Disk to suppport your storage type

• eg: adding support for RBD: commit 7181fba

Adding a new hypervisor (medium)

• "just" implement the hypervisor API (easy)

• Add the hypervisor name and parameters to contants.py

• Alter cmdlib as needed for supporting it

• Alter the hypervisor API as needed for supporting it

Conclusion
Questions?
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