
Ganeti design

A cluster virtualization manager, internals.

© 2010-2011 Google
Use under GPLv2+ or CC-by-SA
Some images borrowed/modified from Lance Albertson and Iustin Pop

Node roles (management level)

• Master Node

• runs ganeti-masterd, rapi, noded and confd

• Master candidates

• have a full copy of the config, can become master

• run ganeti-confd and noded

• Master capable

• can be upgraded to master candidates, if needed

• Regular nodes

• cannot become master

• get only part of the config

• Offline nodes, are in repair

Node roles (instance hosting level)

• VM capable nodes

• can run virtual machines

• Drained nodes

• are being evacuated

• Offlined nodes, are in repair

Ganeti Components
Main Ganeti components, and how they communicate:



Ganeti Core Structure
Core source structure:

Jobs

• List of opcodes, executed in sequence

• Submitted by the cli, or via rapi, or by other jobs

Opcodes



• Cluster business logic

• Implemented in cmdlib

RPCs

• Per-node business logic

• Implemented in backend (using bdev, hypervisor, runcmd)

Config

• Tree of "objects" with all the cluster entities

• Replicated to all master candidates



ssconf

• Flat-file export of parts of the config

• Available on all nodes

Customizing Ganeti
Most common customizations:

• Altering hypervisor behavior

• Adding an hypervisor parameter

• Altering cluster business logic

• Adding an option to the cluster business logic

• Adding a backend storage

• Adding a new hypervisor

Altering hypervisor behavior (simple)

• Edit the logic in your hypervisor's file

• For example add a command line flag to kvm, or a config value for xen

Adding an hypervisor parameter (simple)



• Add the parameter in constants.py (eg: HV_KVM_SPICE_USE_VDAGENT)

• Edit the logic in your hypervisor's file

• eg: migration bandwidth and downtime control: commit e43d4f9f

Altering cluster business logic (medium)

• Change the logic in cmdlib.py

• Be careful w.r.t. locking (do you need more? less?)

• Add any rpc to backend.py, rpc_defs.py, server/noded.py

• If the hypervisor interface changes, update all hypervisors

Adding opcode level options (medium)

• Add the option field to opcodes.py, use the right type (see ht.py)

• Use the option in cmdlib (see "altering cluster business logic")

• Add the command line flag to cli.py and the right utility in client/*

Adding a backend storage (hard)

• Implement the BlockDev interface in bdev.py

• Add the logic in cmdlib (eg. migration, verify)

• Add the new storage type name to constants

• Add any parameter the new storage needs to constants

• Modify objects.Disk to suppport your storage type

• eg: adding support for RBD: commit 7181fba

Adding a new hypervisor (medium)

• "just" implement the hypervisor API (easy)

• Add the hypervisor name and parameters to contants.py

• Alter cmdlib as needed for supporting it

• Alter the hypervisor API as needed for supporting it

Conclusion
Questions?

© 2010-2011 Google
Use under GPLv2+ or CC-by-SA
Some images borrowed/modified (with permission) from Lance Albertson


	Node roles (management level)
	Node roles (instance hosting level)
	Ganeti Components
	Ganeti Core Structure
	Jobs
	Opcodes
	RPCs
	Config
	ssconf
	Customizing Ganeti
	Altering hypervisor behavior (simple)
	Adding an hypervisor parameter (simple)
	Altering cluster business logic (medium)
	Adding opcode level options (medium)
	Adding a backend storage (hard)
	Adding a new hypervisor (medium)
	Conclusion

