

Ganeti

Automating Ganeti

Automating Aspects of Ganeti administration

+ Guido Trotter <ultrotter@google.com>
-+ Helga Velroyen <helgav@google.com>

Latest version of these slides

Please find the latest version of these slides at;

https://code.google.com/p/ganeti/wiki/LISA2013

4/25

https://code.google.com/p/ganeti/wiki/LISA2013

Programatic control of Ganeti

- Ganeti is all about automating the complex.
- You can write your own automation to control Ganeti.

5/25

Use bash for small scripts

Example: Find instances that are not using all the RAM allocated to them:

ITEMS=$(gnt-instance list -0 name,oper ram,be/memory | awk '$2 != $3')
for 1 in $ITEMS ; do

echo 'Why u no use your RAM,"' $i '?'
done

Llist is faster, and easier to parse, than info

gnt-* commands don't return until the action is complete.
- Add - -submit if waiting is not required.
+ Submit long-running jobs with - -priority=_low

6/25

RAPI

- RAPI is the Remote API.

- (not to be confused with the API used between masterd and noded)
- It is RESTful

+ Client library hides all the details.

» You just need the cluster name and (for write access) credentials.
- http://docs.ganeti.org/ganeti/current/html/rapi.ntml

7125

http://docs.ganeti.org/ganeti/current/html/rapi.html

Python Examples (1)

Read only requires no password:

import ganeti rapi client as grc PYTHON
rapi = grc.GanetiRapiClient('clusterl.example.com')
print rapi.GetInfo()
print rapi.GetInstances(bulk=True)
Tip: Results are often long. Make them readable with pprint:
PYTHON

import pprint
pp = pprint.PrettyPrinter(indent=4).pprint

census = rapi.GetInstances(bulk=True)
pp(census)

8/25

Python Examples (2)

Read/Write requires credentials:

import ganeti rapi client as grc PYTHON

rapi = grc.GanetiRapiClient('clusterl.example.com')
rapi = grc.GanetiRapiClient(
clusterl', username='USERNAME', password='PASSWORD")

rapi.AddClusterTags (tags=["'heuer'])

9/25

ProTip: Your cluster is alive

Bad: Things could change between queries:

gnt-instance list -F 'pnode == "gntal"'
read -p 'Shut these down? ' ANS
if [[$ANS == 'y']]; then
gnt-instance list -F 'pnode == "gntal"' -o name \
--no-headings |
xargs -nl gnt-instance shutdown
fi

Good: Make list and work from it:

L=$(gnt-instance list -F 'pnode == "gntal"' -o name --no-headings)
echo $L ; read -p 'Shut these down? ' ANS
if [[$ANS == 'y']]; then
echo $L | xargs -nl gnt-instance shutdown -f
fi

BASH

BASH

10/25

Things to automate

+Adding instances of various types.
- Toinsure all parameters are correct
Periodic rebalances
- Check to see if sufficiently unbalanced first
Detect/fix DRBD issues

- Find instances in degrated mode, stuck replication, etc.

- Have a look at harep
- Workflow for evacuating a node:

- remove from monitoring system

- evacuate primaries and secondaries

- check to see if evacuation complete

- print that it is safe to power off node for maintenance
+ Configuring a node

11/25

Automating node configuration

Configure nodes consistantly:
- package versions,
configuration files,
- network configuration
Ganeti runs smoother: Fewer "UFQO" problems.
Easier to administer: Less to remember.

Automate node configuration to achieve consistency.

"A foolish consistency is the hobgoblin of little minds."
--- Ralph Waldo Emerson

"Don't be a fool, configure all nodes consistently."
--- Guido and Tom

12/25

General strategy

+ Use PXE to install a "base OS"
- Let installer partition the disks
-+ Use CfEngine, Puppet or Chef to configure the host

13/25

Puppet Tip 1:

Install specific version of a package, not 'latest'

Reduces "surprise" upgrades in depot.
Required for a "DEV -> QA -> PRODUCTION" strategy

vackage { PUPPET

'xen-hypervisor-4.0-amd64': ensure => '4.0.1-5.2";
‘ganeti2': ensure => '2.6.0-1';

}

14/25

Puppet Tip 2:

Add-ons like Augeas can edit complex configuration files:

augeas{"grup ganeti settings" : PUPPET
context => '/files/etc/default/grub’,
changes => [
'set GRUB DISABLE 0S PROBER true',
'set GRUB CMDLINE XEN DEFAULT \'"dom@ mem=512M"\"'",
]
}

Latest release understands the LISP-like format of xend-config.sxp and much,
much more.

15/25

Puppet Tip 3:
/etc/network/interfaces can be generated by template...

$primary interface name = ...
$primary interface ip = ...
$replication interface name = ...
$replication interface ip = ...

file {
path => "/etc/network/interfaces",
owner => root,
group => root,
mode => 0644,
content => template('interfaces-2nic.erb),

16/25

Puppet Tip 3b:

...0r use Augeas to edit /etc/network/interfaces in place:

augeas { "ethl":
context => "/files/etc/network/interfaces",
changes => |
"set auto[child::1 = 'ethl']/1 ethl",

"set iface[. = 'ethl'] ethl",
"set iface[. = 'ethl']/family inet",
"set iface[. = 'ethl']/method dhcp",

]I
}

17/25

Autorepair (harep)

Before Ganeti 2.8, there was no self-repair:

- DRBD instance is broken
- manually fail it over
- trigger a disk replacement

- Plain instance is broken
+ Manually recreate disk(s) and reinstall

18/25

Harep

+ The Ganeti autorepair tool
+Available since Ganeti 2.8
Meant to be run regularly using cron
+ Admin can allow/disallow specific repairs
Design Doc: doc/design-autorepair.rst
Includes detailed description of all the intermediate tags used internally

19/25

Controlling autorepair

+ Harep is controlled through tags

- ganeti:watcher:autorepair:<type>
+instance/nodegroup/cluster
- What kind of repair allowed? (Sorted, more risky includes less risky)

- fix-storage: disk replacement or fix the backend without affecting the
instance itself (broken drbd secondary)

- migrate: allow instance migration
- failover: allow instance reboot on the secondary
reinstall: allow disks to be recreated and the instance to be reinstalled

20/25

Risks

fix-storage: data loss if something is wrong on the primary but the
secondary was somehow recoverable

migrate: can cause instance crash (bugs)
failover: loses the running state
reinstall: data loss

21/25

Preventing autorepair

- Blocking a few repairs is easier than changing all the enabled ones
repair:suspended
+ prevents an instance from being touched
+ can specify an expiration timestamp

22/25

How does it work?

+ Multiple states for instances
- Healthy
+ Suspended
- Needs repair, repair disallowed
- Pending repair
+ Failed

+ Every run of harep
+ updates the tags
+ submits jobs

23/25

The result

ganeti:watcher:autorepair:result:<type>:<id>:<timestamp>:
<result>:<jobs>
- Aautorepair:result tagis left on the repaired instance
- <repair>
success
- failure
enoperm (=blocked by policies)

24/25

Thank You!

Questions?

Survey at https://www.usenix.org/lisa13/training/survey

+ © 2010 - 2013 Google
-+ Use under GPLv2+ or CC-by-SA

-+ Some images borrowed / modified from Lance Albertson and lustin
Pop

- Some slides were borrowed / modified from Tom Limoncelli

https://www.usenix.org/lisa13/training/survey

